Assessment of Sorptivity and Porosity Characteristics of Self-Compacting Concrete from Blended Cements Using Calcined Clay and Fly Ash at Various Replacement Levels

Author(s):  
Harshvardhan ◽  
Arun C. Emmanuel ◽  
Shashank Bishnoi
2021 ◽  
Vol 290 ◽  
pp. 123209
Author(s):  
R. Prakash ◽  
Sudharshan N. Raman ◽  
N. Divyah ◽  
C. Subramanian ◽  
C. Vijayaprabha ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
pp. 196-201
Author(s):  
Jacek Gołaszewski ◽  
Grzegorz Cygan ◽  
Tomasz Ponikiewski ◽  
Małgorzata Gołaszewska

AbstractThe main goal of the presented research was to verify the possibility of obtaining ecological self-compacting concrete of low hardening temperature, containing different types of cements with calcareous fly ash W as main component and the influence of these cements on basic properties of fresh and hardened concrete. Cements CEM II containing calcareous fly ash W make it possible to obtain self-compacting concrete (SCC) with similar initial flowability to analogous mixtures with reference cement CEM I and CEM III/B, and slightly higher, but still acceptable, flowability loss. Properties of hardened concretes with these cements are similar in comparison to CEM I and CEM III concretes. By using cement nonstandard, new generation multi-component cement CEM “X”/A (S-W), self-compacting concrete was obtained with good workability and properties in hardened state.


2020 ◽  
Vol 11 (1) ◽  
pp. 107
Author(s):  
B. Simões ◽  
P. R. da Silva ◽  
R. V. Silva ◽  
Y. Avila ◽  
J. A. Forero

This study aims to evaluate the potential of incorporating fly ash (FA) and municipal solid waste incinerator bottom ash (MIBA) as a partial substitute of cement in the production of self-compacting concrete mixes through an experimental campaign in which four replacement levels (i.e., 10% FA + 20% MIBA, 20% FA + 10% MIBA, 20% FA + 40% MIBA and 40% FA + 20% MIBA, apart from the reference concrete) were considered. Compressive and tensile strengths, Young’s modulus, ultra-sonic pulse velocity, shrinkage, water absorption by immersion, chloride diffusion coefficient and electrical resistivity were evaluated for all concrete mixes. The results showed a considerable decline in both mechanical and durability-related performances of self-compacting concrete with 60% of substitution by MIBA mainly due to the aluminium corrosion chemical reaction. However, workability properties were not significantly affected, exhibiting values similar to those of the control mix.


2021 ◽  
Vol 141 ◽  
pp. 106334
Author(s):  
Ran Li ◽  
Lei Lei ◽  
Tongbo Sui ◽  
Johann Plank

2007 ◽  
Vol 21 (6) ◽  
pp. 1356-1361 ◽  
Author(s):  
P. Chindaprasirt ◽  
P. Kanchanda ◽  
A. Sathonsaowaphak ◽  
H.T. Cao

Sign in / Sign up

Export Citation Format

Share Document