The Effect of Using Waste Tire as a Fine Aggregate on Mechanical Properties of Fly Ash-Substituted Self-Compacting Concrete

Author(s):  
Selim Cemalgil
2019 ◽  
Vol 12 (4) ◽  
pp. 790-811
Author(s):  
A. PCZIECZEK ◽  
C. EFFTING ◽  
I. R. GOMES ◽  
A. SCHACKOW ◽  
E. HENNING

Abstract This article aims to perform statistical analysis on the inclusion effects of waste tire rubber and fly ash from thermoelectric plants as mortar components for coating buildings. Reference mortars and mortars containing 5% and 10% rubber with a maximum grain size of 0.71 mm and mortars containing fly ash particles with a diameter of 45 μm were produced. Mortars containing rubber replaced 5% and 10% of the fine aggregate mass by this material and fly ash was added in 10% and 20% proportions compared to the cement volume. A 3² factorial experiment was performed on the mechanical properties of the compressive strength of mortars, applying analysis of variance (ANOVA) and surface response. The rubber waste material contributed to the decrease in compressive strength of the mortar and that factor displayed the highest significance in the response variable.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6692
Author(s):  
Xianhui Zhao ◽  
Haoyu Wang ◽  
Linlin Jiang ◽  
Lingchao Meng ◽  
Boyu Zhou ◽  
...  

The long-term property development of fly ash (FA)-based geopolymer (FA−GEO) incorporating industrial solid waste carbide slag (CS) for up to 360 d is still unclear. The objective of this study was to investigate the fresh, physical, and mechanical properties and microstructures of FA−GEO composites with CS and to evaluate the effects of CS when the composites were cured for 360 d. FA−GEO composites with CS were manufactured using FA (as an aluminosilicate precursor), CS (as a calcium additive), NaOH solution (as an alkali activator), and standard sand (as a fine aggregate). The fresh property and long-term physical properties were measured, including fluidity, bulk density, porosity, and drying shrinkage. The flexural and compressive strengths at 60 d and 360 d were tested. Furthermore, the microstructures and gel products were characterized by scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The results show that the additional 20.0% CS reduces the fluidity and increases the conductivity of FA−GEO composites. Bulk densities were decreased, porosities were increased, and drying shrinkages were decreased as the CS content was increased from 0.0% to 20.0% at 360 d. Room temperature is a better curing condition to obtain a higher long-term mechanical strength. The addition of 20.0% CS is more beneficial to the improvement of long-term flexural strength and toughness at room temperature. The gel products in CS−FA−GEO with 20.0% CS are mainly determined as the mixtures of sodium aluminosilicate (N−A−S−H) gel and calcium silicate hydration (C−S−H) gel, besides the surficial pan-alkali. The research results provide an experimental basis for the reuse of CS in various scenarios.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1821 ◽  
Author(s):  
Robert Bušić ◽  
Mirta Benšić ◽  
Ivana Miličević ◽  
Kristina Strukar

The paper aims to investigate the influence of waste tire rubber and silica fume on the fresh and hardened properties of self-compacting concrete (SCC) and to design multivariate regression models for the prediction of the mechanical properties of self-compacting rubberized concrete (SCRC). For this purpose, 21 concrete mixtures were designed. Crumb rubber derived from end-of-life tires (grain size 0.5–3.5 mm) was replaced fine aggregate by 0%, 5%, 10%, 15%, 20%, 25%, and 30% of total aggregate volume. Silica fume was replaced cement by 0%, 5%, and 10% of the total cement mass. The optimal replacement level of both materials was investigated in relation to the values of the fresh properties and mechanical properties of self-compacting concrete. Tests on fresh and hardened self-compacting concrete were performed according to the relevant European standards. Furthermore, models for predicting the values of the compressive strength, modulus of elasticity, and flexural strength of SCRC were designed and verified with the experimental results of 12 other studies. According to the obtained results, mixtures with up to 15% of recycled rubber and 5% of silica fume, with 28 days compressive strength above 30 MPa, were found to be optimal mixtures for the potential future investigation of reinforced self-compacting rubberized concrete structural elements.


2013 ◽  
Vol 857 ◽  
pp. 10-19
Author(s):  
Ji Liang Wang ◽  
Xiang Qian Wen ◽  
Jun Hong Shan ◽  
Ying Liu

the influence of mixing amount of mineral admixture, volume content of fine and coarse aggregate have been systematical studied on the workability, mechanical properties and volume stability of self-compacting concrete. Test results showed that with the fly ash content increased, the workability of self-compacting concrete improved significantly, early compressive strength decreased, but increase rate of later strength improved remarkably, and the mixing amount of fly ash inhibited significantly the dry shrinkage of self-compacting concrete; with the volume content of coarse aggregate increased, the workability of self-compacting concrete decreased significantly, but the volume stability of self-compacting concrete improved obviously, thus the optimum volume content of coarse aggregate of self-compacting concrete was range from 0.30 to 0.34; when the volume content of fine aggregate varied at the range of 0.40~0.50, there may be little effects on the workability of self-compacting concrete, but the increase self-compacting concretes volume content could reduce obviously the dry shrinkage of self-compacting concrete. Moreover, the variation in the volume content of coarse and fine aggregate should have slight influence on the early strength of self-compacting concrete, and the influence of the volume content variety on the later strength of self-compacting concrete could be neglected eventually.


2019 ◽  
Vol 8 (2) ◽  
pp. 5761-5765

With an objective of saving the environment by providing crumb rubber as an alternative to natural fine aggregate this paper presents a study carried out to find the mechanical properties of rubberized concrete. Rubberized concrete is made up of waste rubber from vehicle tyres and other rubber waste which otherwise is left out polluting the environment. In this paper, 7.5% of crumb rubber (obtained by shredding the vehicle tyres) as an alternative to fine aggregate and 7.5% of fly-ash as an alternative to cement is added with other ingredients of concrete to produce an eco-friendly concrete which can be used economically and effectively for construction along the coastal areas. Various properties like workability, compressive strength, split tensile strength, and flexural strength was carried out on concrete specimens exposed to the natural marine environment along the coast of Visakhapatnam, Andhra Pradesh. The total exposure of concrete specimen was about 150 days, and various specimens were tested at 7, 28, 90, 120 and 150 days, respectively. The test results showed that with a slight compromise in strength, the workability of concrete and resistance to the effect of seawater on the strength of concrete significantly improved with the addition of crumb rubber and fly-ash.


2021 ◽  
Vol 11 (13) ◽  
pp. 6028
Author(s):  
P. Jagadesh ◽  
Andrés Juan-Valdés ◽  
M. Ignacio Guerra-Romero ◽  
Julia M. Morán-del Morán-del Pozo ◽  
Julia García-González ◽  
...  

One of the prime objectives of this review is to understand the role of design parameters on the mechanical properties (Compressive and split tensile strength) of Self-Compacting Concrete (SCC) with recycled aggregates (Recycled Coarse Aggregates (RCA) and Recycled Fine Aggregates (RFA)). The design parameters considered for review are Water to Cement (W/C) ratio, Water to Binder (W/B) ratio, Total Aggregates to Cement (TA/C) ratio, Fine Aggregate to Coarse Aggregate (FA/CA) ratio, Water to Solid (W/S) ratio in percentage, superplasticizer (SP) content (kg/cu.m), replacement percentage of RCA, and replacement percentage of RFA. It is observed that with respect to different grades of SCC, designed parameters affect the mechanical properties of SCC with recycled aggregates.


2022 ◽  
Vol 1048 ◽  
pp. 376-386
Author(s):  
M.S. Riyana ◽  
Dhanya Sathyan ◽  
M.K. Haridharan

SCC (Self compacting concrete) can fill formwork and encloses reinforcing bars under gravity and maintains homogeneity without vibration. SCC shortens the period of construction, guarantees compaction in confined zones, moreover terminates noise due to vibration. The wide spread application of SCC is restricted because of the high cost for the production of SCC with high cement content and chemical admixtures. In order to make the production of SCC economical, and to reduce the high cement content the Ordinary Portland Cement in SCC can be blended with pozzolanic materials like rice husk ash and supplementary cementitious materials like fly ash. In this paper the fresh state properties and mechanical properties such as compressive strength, split tensile strength and flexural strength of SCC with ternary blends of rice husk ash (RHA) and fly ash (FA) were studied. For this purpose, different mixes were prepared by replacing Ordinary Portland Cement (OPC) with 5%, 10%, 15% and 20% of rice husk ash (RHA) and the percentage of addition of fly ash (FA) is fixed as 15% for all these mixes. It was observed that the specimen incorporating 10% of rice husk ash (RHA) and 15% of fly ash (FA) as ternary blend exhibits better mechanical properties such as: Compressive, split tensile and flexural strengths at 28 days of age as compared to traditional mix of SCC without RHA (Rice Husk Ash) and FA (Fly Ash). This research demonstrates that the ideal percentage for a mixture of rice husk ash (RHA) and fly ash as ternary blend is 10% and 15% respectively.


Sign in / Sign up

Export Citation Format

Share Document