Survey on Detection and Prediction Techniques of Drive-by Download Attack in OSN

Author(s):  
Madhura Vyawahare ◽  
Madhumita Chatterjee
1995 ◽  
Vol 32 (2) ◽  
pp. 297-304
Author(s):  
Willem A. M. Botes ◽  
J. F. Kapp

Field dilution studies were conducted on three “deep” water marine outfalls located along the South African coast to establish the comparibility of actual achievable initial dilutions against the theoretical predicted values and, where appropriate, to make recommendations regarding the applicability of the different prediction techniques in the design of future outfalls. The physical processes along the 3000 km long coastline of South Africa are diverse, ranging from dynamic sub-tropical waters on the east coast to cold, stratified stagnant conditions on the west coast. Fourteen existing offshore marine outfalls serve medium to large industries and various local authorities (domestic effluent). For this investigation three outfalls were selected to represent the range of outfall types as well as the diversity of the physical conditions of the South African coastline. The predicted dilutions, using various approaches, compared well with the measured dilutions. It was found that the application of more “simple” prediction techniques (using average current velocities and ambient densities) may be more practical, ensuring a conservative approach, in pre-feasibility studies, compared to the more detailed prediction models, which uses accurate field data (stratification and current profiles), when extensive field data is not readily available.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Hajira Saleem ◽  
Faisal Riaz ◽  
Leonardo Mostarda ◽  
Muaz A. Niazi ◽  
Ammar Rafiq ◽  
...  

2021 ◽  
Vol 9 (7) ◽  
pp. 767
Author(s):  
Shin-Pyo Choi ◽  
Jae-Ung Lee ◽  
Jun-Bum Park

The enlargement of ships has increased the relative hull deformation owing to draft changes. Moreover, design changes such as an increased propeller diameter and pitch changes have occurred to compensate for the reduction in the engine revolution and consequent ship speed. In terms of propulsion shaft alignment, as the load of the stern tube support bearing increases, an uneven load distribution occurs between the shaft support bearings, leading to stern accidents. To prevent such accidents and to ensure shaft system stability, a shaft system design technique is required in which the shaft deformation resulting from the hull deformation is considered. Based on the measurement data of a medium-sized oil/chemical tanker, this study presents a novel approach to predicting the shaft deformation following stern hull deformation through inverse analysis using deep reinforcement learning, as opposed to traditional prediction techniques. The main bearing reaction force, which was difficult to reflect in previous studies, was predicted with high accuracy by comparing it with the measured value, and reasonable shaft deformation could be derived according to the hull deformation. The deep reinforcement learning technique in this study is expected to be expandable for predicting the dynamic behavior of the shaft of an operating vessel.


2021 ◽  
Author(s):  
Edwin Lughofer ◽  
Mahardhika Pratama

AbstractEvolving fuzzy systems (EFS) have enjoyed a wide attraction in the community to handle learning from data streams in an incremental, single-pass and transparent manner. The main concentration so far lied in the development of approaches for single EFS models, basically used for prediction purposes. Forgetting mechanisms have been used to increase their flexibility, especially for the purpose to adapt quickly to changing situations such as drifting data distributions. These require forgetting factors steering the degree of timely out-weighing older learned concepts, whose adequate setting in advance or in adaptive fashion is not an easy and not a fully resolved task. In this paper, we propose a new concept of learning fuzzy systems from data streams, which we call online sequential ensembling of fuzzy systems (OS-FS). It is able to model the recent dependencies in streams on a chunk-wise basis: for each new incoming chunk, a new fuzzy model is trained from scratch and added to the ensemble (of fuzzy systems trained before). This induces (i) maximal flexibility in terms of being able to apply variable chunk sizes according to the actual system delay in receiving target values and (ii) fast reaction possibilities in the case of arising drifts. The latter are realized with specific prediction techniques on new data chunks based on the sequential ensemble members trained so far over time. We propose four different prediction variants including various weighting concepts in order to put higher weights on the members with higher inference certainty during the amalgamation of predictions of single members to a final prediction. In this sense, older members, which keep in mind knowledge about past states, may get dynamically reactivated in the case of cyclic drifts, which induce dynamic changes in the process behavior which are re-occurring from time to time later. Furthermore, we integrate a concept for properly resolving possible contradictions among members with similar inference certainties. The reaction onto drifts is thus autonomously handled on demand and on the fly during the prediction stage (and not during model adaptation/evolution stage as conventionally done in single EFS models), which yields enormous flexibility. Finally, in order to cope with large-scale and (theoretically) infinite data streams within a reasonable amount of prediction time, we demonstrate two concepts for pruning past ensemble members, one based on atypical high error trends of single members and one based on the non-diversity of ensemble members. The results based on two data streams showed significantly improved performance compared to single EFS models in terms of a better convergence of the accumulated chunk-wise ahead prediction error trends, especially in the case of regular and cyclic drifts. Moreover, the more advanced prediction schemes could significantly outperform standard averaging over all members’ outputs. Furthermore, resolving contradictory outputs among members helped to improve the performance of the sequential ensemble further. Results on a wider range of data streams from different application scenarios showed (i) improved error trend lines over single EFS models, as well as over related AI methods OS-ELM and MLPs neural networks retrained on data chunks, and (ii) slightly worse trend lines than on-line bagged EFS (as specific EFS ensembles), but with around 100 times faster processing times (achieving low processing times way below requiring milli-seconds for single samples updates).


Sign in / Sign up

Export Citation Format

Share Document