CFD Analysis for Heat Transfer Enhancement of Microchannels Heat Sink Using Nanofluid Flow in Case of Electronics Device

Author(s):  
Sushant Suresh Bhuvad ◽  
Arvind Kumar Patel ◽  
S. P. S. Rajput
2017 ◽  
Vol 21 (1 Part A) ◽  
pp. 279-288 ◽  
Author(s):  
Shuxia Qiu ◽  
Peng Xu ◽  
Liping Geng ◽  
Arun Mujumdar ◽  
Zhouting Jiang ◽  
...  

Air jet impingement is one of the effective cooling techniques employed in micro-electronic industry. To enhance the heat transfer performance, a cooling system with air jet impingement on a finned heat sink is evaluated via the computational fluid dynamics method. A two-dimensional confined slot air impinging on a finned flat plate is modeled. The numerical model is validated by comparison of the computed Nusselt number distribution on the impingement target with published experimental results. The flow characteristics and heat transfer performance of jet impingement on both of smooth and finned heat sinks are compared. It is observed that jet impingement over finned target plate improves the cooling performance significantly. A dimensionless heat transfer enhancement factor is introduced to quantify the effect of jet flow Reynolds number on the finned surface. The effect of rectangular fin dimensions on impingement heat transfer rate is discussed in order to optimize the cooling system. Also, the computed flow and thermal fields of the air impingement system are examined to explore the physical mechanisms for heat transfer enhancement.


2001 ◽  
Author(s):  
Jeung Sang Go ◽  
Geunbae Lim ◽  
Hayong Yun ◽  
Sung Jin Kim ◽  
Inseob Song

Abstract This paper presented design guideline of the microfin array heat sink using flow-induced vibration to increase the heat transfer rate in the laminar flow regime. Effect of the flow-induced vibration of a microfin array on heat transfer enhancement was investigated experimentally by comparing the thermal resistances of the microfin array heat sink and those of a plain-wall heat sink. At the air velocities of 4.4m/s and 5.5 m/s, an increase of 5.5% and 11.5% in the heat transfer rate was obtained, respectively. The microfin flow sensor also characterized the flow-induced vibration of the microfin. It was determined that the microfin vibrates with the fundamental natural frequency regardless of the air velocity. It was also shown that the vibrating displacement of the microfin is increased with increasing air velocity and then saturated over a certain value of air velocity. Based on the numerical analysis of the temperature distribution resulted from microfin vibration and experimental results, a simple heat transfer model (heat pumping model) was proposed to understand the heat transfer mechanism of a microfin array heat sink. Under the geometric and structural constraints, the maximum heat transfer enhancement was obtained at the intersection of the minimum thickness of the microfin and constraint of the bending angle.


2012 ◽  
Vol 55 (21-22) ◽  
pp. 5514-5525 ◽  
Author(s):  
M.K. Abdullah ◽  
N.C. Ismail ◽  
M. Abdul Mujeebu ◽  
M.Z. Abdullah ◽  
K.A. Ahmad ◽  
...  

Author(s):  
Ihsan Ali Ghani ◽  
Nor Azwadi Che Sidik ◽  
Rizal Mamat ◽  
G. Najafi ◽  
Tan Lit Ken ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document