Optimization of CNC Die-Sinking EDM Process Parameters Based on MRR and EWR by Taguchi Method Using Copper Electrode on P20 Tool Steel

Author(s):  
Mehul Prajapati ◽  
Sowmin Trivedi
2018 ◽  
Vol 7 (2.8) ◽  
pp. 10
Author(s):  
A VS Ram Prasad ◽  
Koona Ramji ◽  
B Raghu Kumar

Machining of Titanium alloys is difficult due to their chemical and physical properties namely excellent strength, chemical reactivity and low thermal conductivity. Traditional machining of such materials leads to formation of continuous chips and tool bits are subjected to chatter which leads to formation of poor surface on machined surface. In this study, Wire-EDM one of the most popular unconventional machining process which was used to machine such difficult-to-cut materials. Effect of Wire-EDM process parameters namely peak current, pulse-on- time, pulse-off-time, servo voltage on MRRand SR was investigated by Taguchi method. 0.25 mm brass wire was used in this process as electrode material. A surface roughness tester (Surftest 301) was used to measure surface roughness value of the machined work surface. A multi-response optimization technique was then utilized to optimize Wire-EDM process parameters for achieving maximum MRR and minimum SR simultaneously.


Author(s):  
Fred L. Amorim

The AISI P20 steel is applied by the tooling industry as material for injection molding tools. It is known that the EDM process parameters technology installed at the majority of CNC EDM machines do not cover some of the necessities of the tooling industry. So, the customers are required to develop their own process parameters. In order to provide useful technical information to the industry an experimental investigation on the EDM of the AISI P20 tool steel under finish machining has been carried out. The material removal rate Vw, volumetric relative wear v and workpiece surface texture Ra, which are representative of EDM performance aspects, were analyzed against the variation of some of the most important EDM electrical variables using copper tool electrodes under positive and negative polarity. The EDM machine generator was also programmed to actuate under isoenergetic mode and relaxation mode. The results are discussed and some appropriate parameters for EDM of AISI P20 are suggested.


Author(s):  
Madderla Sandhya ◽  
D. Ramasamy ◽  
Irshad ahamad Khilji ◽  
Anil Kumar ◽  
S. Chandramouli ◽  
...  

This project aims to investigate and predict the optimal choice for each EDM parameter using Taguchi Method by conducting a limited number of experiments on “Nimonic” Material. These parameters have a significant influence on the machining characteristics like MRR and TWR. Taguchi design of experiments (DOE) are implemented, particularly L9 orthogonal array is chosen and the effect of dominating process parameters is evaluated using analysis of variance. Nimonic refers to a family of Nickel-based high-temperature low creep superalloys. Due to its ability to withstand very high temperatures, Nimonic is ideal for typical applications such as aircraft parts, gas turbine components and blades, exhaust nozzles etc., for instance, where the pressure and heat are extreme. However, the conventional methods are not suitable to machine the hardest material such as Nimonic superalloy. The EDM, one of the popular unconventional machining methods, is used to the machine with a copper electrode, which in turn uses Taguchi methodology to analyze the effect of each parameter on the machining characteristics. The optimal choice for each EDM parameter such as peak current, gap voltage, duty cycle and pulse on time using the Taguchi method and Genetic Algorithm are identified. These parameters have a significant influence on machining characteristics such as MRR, EWR and surface roughness.


2018 ◽  
Vol 28 ◽  
pp. 55-66 ◽  
Author(s):  
Kuldeep Singh ◽  
Khushdeep Goyal ◽  
Deepak Kumar Goyal

In research work variation of cutting performance with pulse on time, pulse off time, wire type, and peak current were experimentally investigated in wire electric discharge machining (WEDM) process. Soft brass wire and zinc coated diffused wire with 0.25 mm diameter and Die tool steel H-13 with 155 mm× 70 mm×14 mm dimensions were used as tool and work materials in the experiments. Surface roughness and material removal rate (MRR) were considered as performance output in this study. Taguchi method was used for designing the experiments and optimal combination of WEDM parameters for proper machining of Die tool steel (H-13) to achieve better surface finish and material removal rate. In addition the most significant cutting parameter is determined by using analysis of variance (ANOVA). Keywords Machining, Process Parameters, Material removal rate, Surface roughness, Taguchi method


2020 ◽  
Author(s):  
Kumaravel Subramaniam PhD ◽  
Alagumurthi Natarajan PhD ◽  
Nadanakumar Vinayagam ◽  
S Jenoris Muthiya ◽  
Ramdoss Rajendiran PhD

2014 ◽  
Vol 564 ◽  
pp. 481-487 ◽  
Author(s):  
M.K.A.M. Ariffin ◽  
Hazami B. Che Hussain ◽  
Saiful Bahri Mohamed ◽  
S. Sulaiman

Electro discharge machining (EDM) is a process that uses an electric sparks to generate the high temperature and melt the workpiece. One of the EDM process is drilling. In EDM drilling, an electro thermal mechanism is introduced between the electrode and work piece to create the hole. The hole size is dependent on the diameters of electrode used during the drilling process. The present study performs Taguchi method to investigate the optimal process parameters for high-speed EDM super drill machine that is used to make a small hole. The workpiece used is made from titanium alloy (Ti-6: ASTM B348 Grade 5) and the copper electrode is 2.0 mm in diameter. In this experiment, the process parameters that were selected to be optimised are: current pulse off, maximum current and standard voltage levels. An orthogonal array L9 were employed to analyze the hole enlargement and material removal rate (MRR) depending on 2.0 mm diameter hole penetration. The optimum EDM parameters for hole making process was established and verified with the acquired results.


Sign in / Sign up

Export Citation Format

Share Document