Transient Analysis of Rotor System

Author(s):  
D. S. Megharaj ◽  
Amit Malgol
Author(s):  
Santosh Ratan ◽  
Jorge Rodriguez

Abstract A method for performing transient dynamic analysis of multi-shaft rotor system is proposed. The proposed methodology uses the reported Successive Merge and Condensation (SMAC) method [12] and a decoupling technique to decouple the shafts. Multi-shaft rotor systems are treated as systems of many independent single shaft rotor systems with external unknown coupling forces acting at the points of couplings. For each time step, first, the SMAC method is used to get the transient response in terms of the unknown coupling forces. This is followed by the application of the coupling constraints to calculate the coupling forces and, in turn, the response at the end of that time step. The proposed method preserves the efficiency advantages of the SMAC algorithm for single-shaft rotor system. Numerical examples to validate and illustrate the applicability of the method are given. The method is shown to be applicable to linear and non-linear coupling problems.


2013 ◽  
Vol 770 ◽  
pp. 78-83
Author(s):  
Xiu Hua Zhang ◽  
Guang Xi Li ◽  
Long Nie

This article aims at large-scale energy storage flywheel rotor system, obtaining the dynamic characteristics. Through theoretical analysis, and after doing a simulation analysis for a given flywheel rotor on the 0-20000 RPM, getting the flywheel rotor critical speed, the transient analysis and imbalance response. The system is in steady state at runtime according to the analysis results. Providing also certain theory basis for study of flywheel rotor system according to the analysis method .


Author(s):  
Assunta Andreozzi ◽  
Bernardo Buonomo ◽  
Oronzio Manca ◽  
Salvatore Tamburrino

2013 ◽  
Vol 60 (3) ◽  
pp. 319-333
Author(s):  
Rafał Hein ◽  
Cezary Orlikowski

Abstract In the paper, the authors describe the method of reduction of a model of rotor system. The proposed approach makes it possible to obtain a low order model including e.g. non-proportional damping or the gyroscopic effect. This method is illustrated using an example of a rotor system. First, a model of the system is built without gyroscopic and damping effects by using the rigid finite element method. Next, this model is reduced. Finally, two identical, low order, reduced models in two perpendicular planes are coupled together by means of gyroscopic and damping interaction to form one model of the system. Thus a hybrid model is obtained. The advantage of the presented method is that the number of gyroscopic and damping interactions does not affect the model range


Sign in / Sign up

Export Citation Format

Share Document