Implementation of Yield Criteria in ABAQUS for Simulations of Deep Drawing: A Review and Preliminary Results

Author(s):  
Arpit Tripathi ◽  
R. Ganesh Narayanan ◽  
Uday S. Dixit
2019 ◽  
Vol 13 (3) ◽  
pp. 355-369 ◽  
Author(s):  
Nitin Kotkunde ◽  
Anand Badrish ◽  
Ayush Morchhale ◽  
Prathamesh Takalkar ◽  
Swadesh Kumar Singh

Author(s):  
Chu Wang ◽  
Delun Li ◽  
Bao Meng ◽  
Min Wan

Owing to the reduction of rupture instability and the avoidance of wrinkle defect, hydrodynamic deep drawing (HDD) process is gradually becoming attractive for fabricating lightweight and complicated products. Meanwhile, since metallic material presents anisotropic deformation behavior, it is necessary to select an appropriate constitutive model for the prediction of plastic deformation behavior of applied material with high precision. In the present research, several anisotropic yield criteria namely, Hill’48, Yld2000-2d and BBC2005 are implemented to investigate the effect of yield functions on the prediction accuracy of the critical process window and deformation behavior for HDD process of 2024 and 5754 aluminum alloys. Material constants in the yield criteria are determined by applying uniaxial and equi-biaxial tension tests and optimizing an error-function by using the Levenberg-Marquardt algorithm. Furthermore, the process window diagram is computed utilizing the stress analytical model combined material properties with workpiece geometrical features. Numerical simulation results of predicted material anisotropic parameters, process window and HDD deformation for aluminum alloys are compared with the experimental data. Through the comparison of diverse yield criteria based on materials anisotropic coefficients, critical process window prediction, earing profile, and thickness distribution, it is revealed that the Yld2000-2d and the BBC2005 yield criteria can offer more precise models of material behavior in planar anisotropy properties for HDD process of 2024 and 5754 aluminum alloys.


Author(s):  
Khadija Ben Othmen ◽  
Kacem Sai ◽  
Pierre-Yves Manach ◽  
Khaled Elleuch

The present work aims to study the constitutive models’ influence on the reverse deep drawing simulation of cylindrical cups. Several constitutive laws were considered to predict the combined effects of anisotropy as well as the changes in strain path direction of the stainless steel. To this end, a number of models were used, worth mentioning among which are the isotropic with nonlinear kinematic hardening laws, along with the isotropic von Mises and anisotropic Hill’48 yield criteria. For the models’ parameters identification, uniaxial tensile and shear tests at several orientations to the rolling direction as well as reversed shear tests were carried out. Then, a subsequent comparison between experimental data and numerical simulations of reverse deep drawing tests were performed, using the finite element code Abaqus/Explicit. On the basis of the major reached results, it has been found that for the first stage, whatever the yield criteria used and for all the hardening models, the numerical punch-force evolution correlates well with the experimental one. For the second stage, the punch-force evolution was found to be remarkably more influenced by the yield criteria than by the kinematic laws. The major strain distribution greatly depends on the yield criteria. Meanwhile, it was slightly linked to the work hardening.


2014 ◽  
Vol 63 ◽  
pp. 336-344 ◽  
Author(s):  
Nitin Kotkunde ◽  
Aditya D. Deole ◽  
Amit Kumar Gupta ◽  
Swadesh Kumar Singh

Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 492
Author(s):  
Chu Wang ◽  
Delun Li ◽  
Bao Meng ◽  
Min Wan

Owing to the reduction of rupture instability and the avoidance of wrinkle defect, the hydrodynamic deep drawing (HDD) process is gradually becoming attractive for fabricating lightweight and complicated products. Meanwhile, since metallic materials present anisotropic deformation behavior, it is necessary to select an appropriate constitutive model for the prediction of plastic deformation behavior of applied material with high precision. In the present research, several anisotropic yield criteria, namely, Hill’48, Yld2000-2d, and BBC2005, were implemented to investigate the effects of yield functions on the prediction accuracy of the critical process window and deformation behavior for the HDD process of 2024 and 5754 aluminum alloys. Material constants in the yield criteria were determined by applying uniaxial and equi-biaxial tension tests and optimizing an error-function using the Levenberg–Marquardt algorithm. Furthermore, the process window diagram was computed utilizing the stress analytical model combined material properties with workpiece geometrical features. Numerical simulation results of predicted material anisotropic parameters, process window, and HDD deformation for aluminum alloys were compared with the experimental data. Through the comparison of diverse yield criteria based on materials’ anisotropic coefficients, critical process window prediction, earing profile, and thickness distribution, it was revealed that the Yld2000-2d and the BBC2005 yield criteria can offer more precise models of material behavior in planar anisotropy properties for the HDD process of 2024 and 5754 aluminum alloys.


1999 ◽  
Vol 173 ◽  
pp. 185-188
Author(s):  
Gy. Szabó ◽  
K. Sárneczky ◽  
L.L. Kiss

AbstractA widely used tool in studying quasi-monoperiodic processes is the O–C diagram. This paper deals with the application of this diagram in minor planet studies. The main difference between our approach and the classical O–C diagram is that we transform the epoch (=time) dependence into the geocentric longitude domain. We outline a rotation modelling using this modified O–C and illustrate the abilities with detailed error analysis. The primary assumption, that the monotonity and the shape of this diagram is (almost) independent of the geometry of the asteroids is discussed and tested. The monotonity enables an unambiguous distinction between the prograde and retrograde rotation, thus the four-fold (or in some cases the two-fold) ambiguities can be avoided. This turned out to be the main advantage of the O–C examination. As an extension to the theoretical work, we present some preliminary results on 1727 Mette based on new CCD observations.


2000 ◽  
Vol 179 ◽  
pp. 163-165
Author(s):  
S. K. Solanki ◽  
M. Fligge ◽  
P. Pulkkinen ◽  
P. Hoyng

AbstractThe records of sunspot number, sunspot areas and sunspot locations gathered over the centuries by various observatories are reanalysed with the aim of finding as yet undiscovered connections between the different parameters of the sunspot cycle and the butterfly diagram. Preliminary results of such interrelationships are presented.


1978 ◽  
Vol 48 ◽  
pp. 31-35
Author(s):  
R. B. Hanson

Several outstanding problems affecting the existing parallaxes should be resolved to form a coherent system for the new General Catalogue proposed by van Altena, as well as to improve luminosity calibrations and other parallax applications. Lutz has reviewed several of these problems, such as: (A) systematic differences between observatories, (B) external error estimates, (C) the absolute zero point, and (D) systematic observational effects (in right ascension, declination, apparent magnitude, etc.). Here we explore the use of cluster and spectroscopic parallaxes, and the distributions of observed parallaxes, to bring new evidence to bear on these classic problems. Several preliminary results have been obtained.


Author(s):  
Irwin Bendet ◽  
Nabil Rizk

Preliminary results reported last year on the ion etching of tobacco mosaic virus indicated that the diameter of the virus decreased more rapidly at 10KV than at 5KV, perhaps reaching a constant value before disappearing completely.In order to follow the effects of ion etching on TMV more quantitatively we have designed and built a second apparatus (Fig. 1), which incorporates monitoring devices for measuring ion current and vacuum as well as accelerating voltage. In addition, the beam diameter has been increased to approximately 1 cm., so that ten electron microscope grids can be exposed to the beam simultaneously.


Sign in / Sign up

Export Citation Format

Share Document