inconel 625 alloy
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 61)

H-INDEX

15
(FIVE YEARS 5)

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 46
Author(s):  
Chengxun Zhang ◽  
Zhijun Qiu ◽  
Hanliang Zhu ◽  
Zhiyang Wang ◽  
Ondrej Muránsky ◽  
...  

Relatively high heat input and heat accumulation are treated as critical challenges to affect the qualities and performances of components fabricated by wire arc additive manufacturing (WAAM). In this study, various heat inputs, namely 276, 552 and 828 J/mm, were performed to fabricate three thin-wall Inconel 625 structures by cold metal transfer (CMT)-based WAAM, respectively, and active interpass cooling was conducted to limit heat accumulation. The macrostructure, microstructure and mechanical properties of the produced components by CMT were investigated. It was found that the increased heat input can deteriorate surface roughness, and the size of dendrite arm spacing increases with increasing heat input, thus leading to the deterioration of mechanical properties. Lower heat input and application of active interpass cooling can be an effective method to refine microstructure and reduce anisotropy. This study enhances the understanding of interpass temperature control and the effectiveness of heat inputs for Inconel 625 alloy by WAAM. It also provides a valuable in situ process for microstructure and mechanical properties’ refinement of WAAM-fabricated alloys and the control of heat accumulation for the fabrication of large-sized structures for future practical applications.


2021 ◽  
pp. 100239
Author(s):  
Ariel Gamon ◽  
Edel Arrieta ◽  
Paul R. Gradl ◽  
Colton Katsarelis ◽  
Lawrence E. Murr ◽  
...  

Author(s):  
Yubi Gao ◽  
Yutian Ding ◽  
Yuanjun Ma ◽  
Jianjun Chen ◽  
Xingmao Wang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5059
Author(s):  
Yuelin Song ◽  
Jiangkun Fan ◽  
Xudong Liu ◽  
Peizhe Zhang ◽  
Jinshan Li

Plane strain compression tests were used to study the deformation behavior of an Inconel 625 alloy sheet at various temperatures and strain rates. The peak stress was selected to establish the constitutive equation, and the processing maps under different strains were drawn. The results show that the effective stress–strain curve of Inconel 625 has typical dynamic recrystallization (DRX) characteristics. With the increasing deformation temperature and the decreasing strain rate, the softening effect is significantly enhanced. The parameters of the constitutive equation are calculated, and the average error of the constitutive equation is 5.68%. Through the analysis of the processing map, a deformation temperature of 950–960 °C with a strain rate of 0.007–0.05 s−1 were determined as the unstable region, and obvious local plastic-rheological zones were found in the unstable region. The optimum deformation condition was found to be 1020–1060 °C/0.005–0.03 s−1. Through electron backscattered diffraction (EBSD) characterization, it was found that both the increase of temperature and the decrease of strain rate significantly promote the recrystallization process. At a low strain rate, the main recrystallization mechanism is discontinuous dynamic recrystallization (DDRX). It is expected that the above results can provide references for the optimization of the rolling process and microstructure control of an Inconel 625 alloy sheet.


Sign in / Sign up

Export Citation Format

Share Document