work hardening
Recently Published Documents


TOTAL DOCUMENTS

2241
(FIVE YEARS 261)

H-INDEX

90
(FIVE YEARS 9)

2022 ◽  
Vol 103 ◽  
pp. 67-72
Author(s):  
Zheng Cao ◽  
Zhao Cheng ◽  
Wei Xu ◽  
Lei Lu
Keyword(s):  

2022 ◽  
Vol 141 ◽  
pp. 107407
Author(s):  
Minglei Liu ◽  
Wei Li ◽  
Shifeng Lin ◽  
Huameng Fu ◽  
Hong Li ◽  
...  

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 142
Author(s):  
Yanfeng Yang ◽  
Cyrille Baudouin ◽  
Tudor Balan

The specific loading-path change during sheet metal forming may lead to some abnormal deformation phenomena. Two-stage orthogonal loading paths without elastic unloading have revealed a phenomenon of apparent loss of normality, further modeled in the literature by non-normality theories. In this paper, a particular orthogonal strain-path change is investigated using the Teodosiu–Hu hardening rule within an associated plasticity framework. The results indicate that cross work-hardening has a significant contribution to the apparent loss of normality and subsequent asymmetric yield surface evolution. Detailed contributions of the model’s ingredients and features are clarified. The developed material model is intended for sheet metal forming simulation applications.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 397
Author(s):  
Bin Zhou ◽  
Weiwei Zhang ◽  
Zhongmei Gao ◽  
Guoqiang Luo

As a representative type of superalloy, Inconel 718 is widely employed in aerospace, marine and nuclear industries. The significant work hardening behavior of Inconel 718 can improve the service performance of components; nevertheless, it cause extreme difficulty in machining. This paper aims to investigate the influence of chamfered edge parameters on work hardening in orthogonal cutting of Inconel 718 based on a novel hybrid method, which integrates Coupled Eulerian-Lagrangian (CEL) method and grain-size-based functions considering the influence of grain size on microhardness. Orthogonal cutting experiments and nanoindentation tests are conducted to validate the effectiveness of the proposed method. The predicted results are highly consistent with the experimental results. The depth of work hardening layer increases with increasing chamfer angle and chamfer width, also with increasing feed rate (the uncut chip thickness). However, the maximum microhardness on the machined surface does not exhibit a significant difference. The proposed method can provide theoretical guidance for the optimization of cutting parameters and improvement of the work hardening.


Author(s):  
YQ Hu ◽  
S Zhang ◽  
P Huang ◽  
F Wang

Graphene and nanotwins are two effective reinforced microstructural features to achieve improved mechanical properties of metallic composites, while the two features are generally applied separately. In this study, graphene/nano-twinned Cu nanocomposites models with different arrangement of the graphene and twin boundaries were designed by using molecular dynamics (MD) simulations, and the dislocation processes and the interactions between dislocation and graphene/twin were simulated and investigated. The simulation results indicated the arrangement of graphene and nanotwin affects the work hardening behaviors in the graphene/nano-twinned Cu composites, i.e., two staged work hardening behavior corresponded to cyclic process of dislocation hindrance-absorption-reemission in the model with relatively small twin spacing and twin-graphene spacing, while the work hardening dominated by dislocation intersection and multiplication occurred in the model with large twin-spacing. The simulation provided herein demonstrated that the special arrangement of graphene and nanotwins led a way to tailoring the mechanical properties of metallic composites with various work hardening behaviors. Graphical abstract Highlights 1. Dislocation reactions between twins and graphene were simulated and analyzed. 2. Twin-graphene distance and the twin distance play key roles in the reaction. 3. The mechanism corresponding to work hardening changes in the limited two distances.


Author(s):  
Mei-ling Li ◽  
Wen-jin Gao ◽  
Ying-hao Zhou

Abstract The 60NiTi (Ni60wt%–Ti40wt%) intermetallic is a hard-to-process material. Understanding of hot deformation behavior is crucial for the hot working of 60NiTi. This work studied hot deformation behavior and corresponding microstructure of the hot isostatic pressed 60NiTi in the temperature range of 900 °C–1050 °C and at strain rates of 0.1, 0.01, and 0.001 s-1 through a hot compression test. The flow stress and microstructure were susceptible to the hot deformation parameters. The flow stress decreased with the increase in deformation temperature and decrease in strain rate. Work hardening occurred at a small strain, then followed by softening; finally, near-dynamic equilibrium was achieved between work hardening and softening. A constitutive equation was developed to describe the effects of strain rate and temperature on flow stress. Simulation of hot deformation via the finite element method revealed the workpiece’s inhomogeneous deformation. The deformation occurred mainly in the center area of the cylindrical sample, resulting in high stress and strain concentrations in this region and causing the equiaxial grains to be compressed into prolate grains. This work can provide guidance for the hot working, such as forging and hot rolling, of 60NiTi.


2021 ◽  
Author(s):  
Nicolas Jacques ◽  
Jose Rodriguez-Martinez

The present paper is devoted to the analysis of strain-rate history effects on neck formation under dynamic loading. For materials presenting strain-rate history effects, two different strain-rate sensitivities should be distinguished: the instantaneous strain-rate sensitivity and the work-hardening strain-rate sensitivity. We have analysed the relative contributions of these two kinds of strain-rate sensitivities to neck retardation for two different configurations: a bar under impact tension and a dynamically expanding ring. For this purpose, we have developed finite element models and, for the second configuration, an analytical model based on the linear stability analysis. The obtained results show that strain-rate history effects have a significant influence on the onset and development of necking. The reason of thisphenomenon is that, contrary to the instantaneous strain-rate sensitivity, the work-hardening strain-rate sensitivity does not contribute to delay the neck formation.


2021 ◽  
pp. 22-30
Author(s):  
S. A Barannikova ◽  
A. M Nikonova ◽  
S. V Kolosov

This work deals with studying staging and macroscopic strain localization in austenitic stainless steel 12Kh18N9T within a temperature range of 143 K < T < 420 K. The visualization and evolution of macroscopic localized plastic deformation bands at different stages of work hardening were carried out by the method of the double-exposure speckle photography (DESP), which allows registering displacement fields with a high accuracy by tracing changes on the surface of the material under study and then comparing the specklograms recorded during uniaxial tension. The shape of the tensile curves σ(ε) undergoes a significant change with a decreasing temperature due to the γ-α'-phase transformation induced by plastic deformation. The processing of the deformation curves of the steel samples made it possible to distinguish the following stages of strain hardening, i.e. the stage of linear hardening and jerky flow stage. A comparative analysis of the design diagrams (with the introduction of additional parameters of the Ludwigson equation) and experimental diagrams of tension of steel 12Kh18N9T for different temperatures is carried out. The analysis of local strains distributions showed that at the stage of linear work hardening, a mobile system of plastic strain localization centers is observed. The temperature dependence of the parameters of plastic deformation localization at the stages of linear work hardening has been established. Unlike the linear hardening, the jerky flow possesses the propagation of single plastic strain fronts that occur one after another through the sample due to the γ-α' phase transition and the Portevin-Le Chatelier effect. It was found that at the jerky flow stage, which is the final stage before the destruction of the sample, the centers of deformation localization do not merge, leading to the neck formation.


Sign in / Sign up

Export Citation Format

Share Document