hydrodynamic deep drawing
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 6)

H-INDEX

12
(FIVE YEARS 0)

Author(s):  
Seyed Hassan Alavi Hashemi ◽  
Seyed Mohammad Hossein Seyedkashi

In the deep drawing process, achieving a higher drawing ratio has always been considered by researchers. In this study, a new concept of hydrodynamic deep drawing with two consecutive stages without additional operations such as annealing is proposed to increase the limit drawing ratio of the cups. The effective parameters were investigated numerically and experimentally in the forming of Al1200 cylindrical cups. At first, the desired value of punch diameter ratio was determined based on finite element simulation results and was utilized to increase the cup formability. Next, the effects of pressure paths on the cup thickness, separation, and rupture were studied in each forming stage. The cup formability was investigated based on a new proposed framework to obtain the maximum possible limiting drawing ratio, and the desired conditions were determined. Finally, a cup was formed with a high drawing ratio of 3.4 which was a good achievement in comparison with the literature.


2021 ◽  
Author(s):  
Huiting Wang ◽  
Jianfei Kong ◽  
Hongbo Pan ◽  
Jinxiu Fang ◽  
Xiaohui Shen

Abstract This study focus on the effects of the key process parameters during a modified hydrodynamic deep drawing utilizing a combined floating and static die cavity (HDDC). A two-stage hydraulic loading path is recommended in the novel process, and each stage of the hydraulic loading path is a linear loading path with an inflection point. The method to evaluate the wrinkle and forming dimension precision of the formed parts is introduced at first. Then the influence of the key parameters of the two-stage hydraulic loading path as well as the blank holder force on the dimension accuracy and surface quality of the formed parts was studied in detail. The results showed that the influence of the liquid pressure during the second stage is more significant than that in the first stage in hydrodynamic deep drawing utilizing a combined floating and static die cavity. The initial pressure of the second stage and the maximum pressure arriving moment during this stage have a significant impact on the dimensional accuracy of the formed parts, and the smaller initial pressure or the later the maximum pressure of the second stage arrives, the higher the accuracy of the formed part is. Similarly, the influence of the blank holder force in the second stage on the forming accuracy is more significant than that in the first stage.


Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 492
Author(s):  
Chu Wang ◽  
Delun Li ◽  
Bao Meng ◽  
Min Wan

Owing to the reduction of rupture instability and the avoidance of wrinkle defect, the hydrodynamic deep drawing (HDD) process is gradually becoming attractive for fabricating lightweight and complicated products. Meanwhile, since metallic materials present anisotropic deformation behavior, it is necessary to select an appropriate constitutive model for the prediction of plastic deformation behavior of applied material with high precision. In the present research, several anisotropic yield criteria, namely, Hill’48, Yld2000-2d, and BBC2005, were implemented to investigate the effects of yield functions on the prediction accuracy of the critical process window and deformation behavior for the HDD process of 2024 and 5754 aluminum alloys. Material constants in the yield criteria were determined by applying uniaxial and equi-biaxial tension tests and optimizing an error-function using the Levenberg–Marquardt algorithm. Furthermore, the process window diagram was computed utilizing the stress analytical model combined material properties with workpiece geometrical features. Numerical simulation results of predicted material anisotropic parameters, process window, and HDD deformation for aluminum alloys were compared with the experimental data. Through the comparison of diverse yield criteria based on materials’ anisotropic coefficients, critical process window prediction, earing profile, and thickness distribution, it was revealed that the Yld2000-2d and the BBC2005 yield criteria can offer more precise models of material behavior in planar anisotropy properties for the HDD process of 2024 and 5754 aluminum alloys.


Author(s):  
Chu Wang ◽  
Delun Li ◽  
Bao Meng ◽  
Min Wan

Owing to the reduction of rupture instability and the avoidance of wrinkle defect, hydrodynamic deep drawing (HDD) process is gradually becoming attractive for fabricating lightweight and complicated products. Meanwhile, since metallic material presents anisotropic deformation behavior, it is necessary to select an appropriate constitutive model for the prediction of plastic deformation behavior of applied material with high precision. In the present research, several anisotropic yield criteria namely, Hill’48, Yld2000-2d and BBC2005 are implemented to investigate the effect of yield functions on the prediction accuracy of the critical process window and deformation behavior for HDD process of 2024 and 5754 aluminum alloys. Material constants in the yield criteria are determined by applying uniaxial and equi-biaxial tension tests and optimizing an error-function by using the Levenberg-Marquardt algorithm. Furthermore, the process window diagram is computed utilizing the stress analytical model combined material properties with workpiece geometrical features. Numerical simulation results of predicted material anisotropic parameters, process window and HDD deformation for aluminum alloys are compared with the experimental data. Through the comparison of diverse yield criteria based on materials anisotropic coefficients, critical process window prediction, earing profile, and thickness distribution, it is revealed that the Yld2000-2d and the BBC2005 yield criteria can offer more precise models of material behavior in planar anisotropy properties for HDD process of 2024 and 5754 aluminum alloys.


2018 ◽  
Vol 97 (5-8) ◽  
pp. 2587-2601 ◽  
Author(s):  
Milad Sadegh-yazdi ◽  
Mohammad Bakhshi-Jooybari ◽  
Mohsen Shakeri ◽  
Hamid Gorji ◽  
Maziar Khademi

2018 ◽  
Vol 190 ◽  
pp. 09003
Author(s):  
Maziar Khademi ◽  
Milad Sadegh yazdi ◽  
Mohammad Bakhshi-Jooybari ◽  
Hamid Gorji

Hydrodynamic Deep Drawing (HDDRP), the combination of hydroforming and conventional deep drawing, accommodates the advantages of the two processes. A technique, called HDDRP with inward flowing liquid, has been introduced based on the idea of insertion of radial pressure around the blank rim. The radial pressure created on the blank edge, can increase the drawing ratio. Thus, increasing the radial pressure to an amount greater than the cavity pressure, and independent control of these pressures is the basic idea of this research for forming cylindrical parts. To perform the experiments, two independent pumps were used to provide the two pressures independently. The pressure supply system and the die set were designed in a way that provides simultaneous control of the pressures throughout the process. Then, the effects of radial pressure paths on thickness distribution of cylindrical St13 cups were investigated. In addition, a comparison between HDDRP and HDDRP with inward flowing liquid processes has been performed experimentally. Results indicated that using a higher radial pressure than the cavity pressure and controlling their values at any moment of the process enhances the thickness distribution of the formed part in all regions.


Author(s):  
Milad Sadegh Yazdi ◽  
Mohammad Bakhshi-Jooybari ◽  
Hamid Gorji ◽  
Mohsen Shakeri ◽  
Maziar Khademi

Among the sheet hydroforming processes, hydrodynamic deep drawing (HDD) process has been used to form complex shapes and can produce parts with high drawing ratio. Studies showed that radial pressure created on the edge of the sheet can decrease the drawing force and increase drawing ratio. Thus, increasing of radial pressure to an amount greater than chamber pressure, and independent control of these pressures, is the basic idea in this study. In this research, the effect of radial and chamber pressures on formability of St13 and pure copper sheets in the process of hydrodynamic deep drawing assisted by radial pressure (HDDRP) with inward flowing liquid is investigated. Giving that a significant portion of the maximum thinning of the formed part occurs in the beginning of the process, the pressure supply system used in the experimental tests was designed in a way, which provides simultaneous control of the radial and chamber pressures throughout the process. Thickness distribution, forming force, and tensile stresses are the parameters that were evaluated in this study. Results indicated that using a higher radial pressure than the chamber pressure and controlling their values in the initial stages of the process enhances the thickness distribution of the formed part in all regions. A comparison between the thickness distribution and maximum forming force of the formed parts by the HDDRP and HDDRP with inward flowing liquid methods showed that by applying the later method, parts with more uniform thickness distribution and less maximum thinning and forming force can be achieved.


Sign in / Sign up

Export Citation Format

Share Document