An IoT Based Wearable Device for Healthcare Monitoring

Author(s):  
J. Julian ◽  
R. Kavitha ◽  
Y. Joy Rakesh
Author(s):  
P. Jeyadurga ◽  
S. Ebenezer Juliet ◽  
I. Joshua Selwyn ◽  
P. Sivanisha

The Internet of things (IoT) is one of the emerging technologies that brought revolution in many application domains such as smart cities, smart retails, healthcare monitoring and so on. As the physical objects are connected via internet, security risk may arise. This paper analyses the existing technologies and protocols that are designed by different authors to ensure the secure communication over internet. It additionally focuses on the advancement in healthcare systems while deploying IoT services.


Author(s):  
Muhammad Faris Roslan ◽  
◽  
Afandi Ahmad ◽  
Abbes Amira ◽  
◽  
...  

Author(s):  
Tausifa Jan Saleem ◽  
Mohammad Ahsan Chishti

The rapid progress in domains like machine learning, and big data has created plenty of opportunities in data-driven applications particularly healthcare. Incorporating machine intelligence in healthcare can result in breakthroughs like precise disease diagnosis, novel methods of treatment, remote healthcare monitoring, drug discovery, and curtailment in healthcare costs. The implementation of machine intelligence algorithms on the massive healthcare datasets is computationally expensive. However, consequential progress in computational power during recent years has facilitated the deployment of machine intelligence algorithms in healthcare applications. Motivated to explore these applications, this paper presents a review of research works dedicated to the implementation of machine learning on healthcare datasets. The studies that were conducted have been categorized into following groups (a) disease diagnosis and detection, (b) disease risk prediction, (c) health monitoring, (d) healthcare related discoveries, and (e) epidemic outbreak prediction. The objective of the research is to help the researchers in this field to get a comprehensive overview of the machine learning applications in healthcare. Apart from revealing the potential of machine learning in healthcare, this paper will serve as a motivation to foster advanced research in the domain of machine intelligence-driven healthcare.


2018 ◽  
Vol 5 (4) ◽  
pp. 10644-10651
Author(s):  
S.R. Yadhuraj ◽  
B.G. Sudarshan ◽  
S.C. Prasanna Kumar ◽  
D. Mahesh Kumar

2021 ◽  
Vol 141 (2) ◽  
pp. 89-96
Author(s):  
Hsin-Yen Yen ◽  
Hao-Yun Huang

Aims: Wearable devices are a new strategy for promoting physical activity in a free-living condition that utilizes self-monitoring, self-awareness, and self-determination. The main purpose of this study was to explore health benefits of commercial wearable devices by comparing physical activity, sedentary time, sleep quality, and other health outcomes between individuals who used and those that did not use commercial wearable devices. Methods: The research design was a cross-sectional study using an Internet survey in Taiwan. Self-administered questionnaires included the International Physical Activity Questionnaire–Short Form, Pittsburgh Sleep Quality Index, Health-Promoting Lifestyle Profile, and World Health Organization Quality-of-Life Scale. Results: In total, 781 participants were recruited, including 50% who were users of wearable devices and 50% non-users in the most recent 3 months. Primary outcomes revealed that wearable device users had significantly higher self-reported walking, moderate physical activity, and total physical activity, and significantly lower sedentary time than non-users. Wearable device users had significantly better sleep quality than non-users. Conclusion: Wearable devices inspire users’ motivation, engagement, and interest in physical activity through habit formation. Wearable devices are recommended to increase physical activity and decrease sedentary behavior for promoting good health.


Sign in / Sign up

Export Citation Format

Share Document