Exploring the Applications of Machine Learning in Healthcare

Author(s):  
Tausifa Jan Saleem ◽  
Mohammad Ahsan Chishti

The rapid progress in domains like machine learning, and big data has created plenty of opportunities in data-driven applications particularly healthcare. Incorporating machine intelligence in healthcare can result in breakthroughs like precise disease diagnosis, novel methods of treatment, remote healthcare monitoring, drug discovery, and curtailment in healthcare costs. The implementation of machine intelligence algorithms on the massive healthcare datasets is computationally expensive. However, consequential progress in computational power during recent years has facilitated the deployment of machine intelligence algorithms in healthcare applications. Motivated to explore these applications, this paper presents a review of research works dedicated to the implementation of machine learning on healthcare datasets. The studies that were conducted have been categorized into following groups (a) disease diagnosis and detection, (b) disease risk prediction, (c) health monitoring, (d) healthcare related discoveries, and (e) epidemic outbreak prediction. The objective of the research is to help the researchers in this field to get a comprehensive overview of the machine learning applications in healthcare. Apart from revealing the potential of machine learning in healthcare, this paper will serve as a motivation to foster advanced research in the domain of machine intelligence-driven healthcare.

2021 ◽  
pp. 1-16
Author(s):  
Kevin Kloos

The use of machine learning algorithms at national statistical institutes has increased significantly over the past few years. Applications range from new imputation schemes to new statistical output based entirely on machine learning. The results are promising, but recent studies have shown that the use of machine learning in official statistics always introduces a bias, known as misclassification bias. Misclassification bias does not occur in traditional applications of machine learning and therefore it has received little attention in the academic literature. In earlier work, we have collected existing methods that are able to correct misclassification bias. We have compared their statistical properties, including bias, variance and mean squared error. In this paper, we present a new generic method to correct misclassification bias for time series and we derive its statistical properties. Moreover, we show numerically that it has a lower mean squared error than the existing alternatives in a wide variety of settings. We believe that our new method may improve machine learning applications in official statistics and we aspire that our work will stimulate further methodological research in this area.


Author(s):  
Marina Sokolova ◽  
Stan Szpakowicz

This chapter presents applications of machine learning techniques to problems in natural language processing that require work with very large amounts of text. Such problems came into focus after the Internet and other computer-based environments acquired the status of the prime medium for text delivery and exchange. In all cases which the authors discuss, an algorithm has ensured a meaningful result, be it the knowledge of consumer opinions, the protection of personal information or the selection of news reports. The chapter covers elements of opinion mining, news monitoring and privacy protection, and, in parallel, discusses text representation, feature selection, and word category and text classification problems. The applications presented here combine scientific interest and significant economic potential.


Author(s):  
Andrea Petroni ◽  
Pierpaolo Salvo ◽  
Francesca Cuomo

In the next few years, fundamental technological transitions are expected both for wireless communications, soon resulting in the 5G era, and for the kind of pervasiveness that will be achieved thanks to the Internet of Things. The implementation of such new communication paradigms is expected to significantly revolutionize people’s lives, industry, commerce, and many daily activities. Healthcare applications are considered to be one of the most impacted industries. Sadly, in relation to the COVID-19 pandemic currently afflicting our society, health remote monitoring has become a fundamental and urgent application. The overcrowding of hospitals and medical facilities due to COVID-19, has unavoidably created delays and key issues in providing adequate medical assistance. In several cases, asymptomatic or light symptomatic COVID-19 patients have to be continuously monitored to prevent emergencies, and such an activity does not necessarily require hospitalization. Considering this research direction, this paper investigates the potentiality of cloud-based cellular networks to support remote healthcare monitoring applications implemented in accordance with the IoT paradigm, combined with future cellular systems. The idea is to conveniently replace the physical interaction between patients and doctors with a reliable virtual one, so that hospital services can be reserved for emergencies. Specifically, we investigate the feasibility and effectiveness of remote healthcare monitoring by evaluating its impact on the network performance. Furthermore, we discuss the potentiality of medical data compression and how it can be exploited to reduce the traffic load.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Erfan Babaee Tirkolaee ◽  
Saeid Sadeghi ◽  
Farzaneh Mansoori Mooseloo ◽  
Hadi Rezaei Vandchali ◽  
Samira Aeini

In today’s complex and ever-changing world, concerns about the lack of enough data have been replaced by concerns about too much data for supply chain management (SCM). The volume of data generated from all parts of the supply chain has changed the nature of SCM analysis. By increasing the volume of data, the efficiency and effectiveness of the traditional methods have decreased. Limitations of these methods in analyzing and interpreting a large amount of data have led scholars to generate some methods that have high capability to analyze and interpret big data. Therefore, the main purpose of this paper is to identify the applications of machine learning (ML) in SCM as one of the most well-known artificial intelligence (AI) techniques. By developing a conceptual framework, this paper identifies the contributions of ML techniques in selecting and segmenting suppliers, predicting supply chain risks, and estimating demand and sales, production, inventory management, transportation and distribution, sustainable development (SD), and circular economy (CE). Finally, the implications of the study on the main limitations and challenges are discussed, and then managerial insights and future research directions are given.


2020 ◽  
Vol 10 (2) ◽  
pp. 21 ◽  
Author(s):  
Gopi Battineni ◽  
Getu Gamo Sagaro ◽  
Nalini Chinatalapudi ◽  
Francesco Amenta

This paper reviews applications of machine learning (ML) predictive models in the diagnosis of chronic diseases. Chronic diseases (CDs) are responsible for a major portion of global health costs. Patients who suffer from these diseases need lifelong treatment. Nowadays, predictive models are frequently applied in the diagnosis and forecasting of these diseases. In this study, we reviewed the state-of-the-art approaches that encompass ML models in the primary diagnosis of CD. This analysis covers 453 papers published between 2015 and 2019, and our document search was conducted from PubMed (Medline), and Cumulative Index to Nursing and Allied Health Literature (CINAHL) libraries. Ultimately, 22 studies were selected to present all modeling methods in a precise way that explains CD diagnosis and usage models of individual pathologies with associated strengths and limitations. Our outcomes suggest that there are no standard methods to determine the best approach in real-time clinical practice since each method has its advantages and disadvantages. Among the methods considered, support vector machines (SVM), logistic regression (LR), clustering were the most commonly used. These models are highly applicable in classification, and diagnosis of CD and are expected to become more important in medical practice in the near future.


2018 ◽  
Vol 7 (1.7) ◽  
pp. 201
Author(s):  
K Jayanthi ◽  
C Mahesh

Machine learning enables computers to help humans in analysing knowledge from large, complex data sets. One of the complex data is genetics and genomic data which needs to analyse various set of functions automatically by the computers. Hope this machine learning methods can provide more useful for making these data for further usage like gene prediction, gene expression, gene ontology, gene finding, gene editing and etc. The purpose of this study is to explore some machine learning applications and algorithms to genetic and genomic data. At the end of this study we conclude the following topics classifications of machine learning problems: supervised, unsupervised and semi supervised, which type of method is suitable for various problems in genomics, applications of machine learning and future views of machine learning in genomics.


Author(s):  
Firdous Hina

Abstract: Machine learning is a useful decision-making tool for predicting crop yields, as well as for deciding what crops to plant and what to do during the crop's growth season. To aid agricultural yield prediction studies, a number of machine learning techniques have been used. We employed a Systematic Literature Review (SLR) to extract and synthesize the algorithms and features used in crop production prediction research in this investigation This paper provides a comprehensive overview of the most recent machine learning applications in agriculture, with a focus on pre-harvesting, harvesting, and post-harvesting issues The papers have been studied in depth, analysed the methodology and features employed, and made recommendations for future study. Temperature, rainfall, and soil type are the most commonly utilised features, according to our data, while Artificial Neural Networks are the most commonly employed method in these models.


2019 ◽  
pp. 1-4
Author(s):  
Lavanya Vemulapalli

Machine Learning plays a significant role among the areas of Artificial Intelligence (AI). During recent years, Machine Learning (ML) has been attracting many researchers, and it has been successfully applied in many fields such as medical, education, forecasting etc., Right now, the diagnosis of diseases is mostly from expert's decision. Diagnosis is a major task in clinical science as it is crucial in determining if a patient is having the disease or not. This in turn decides the suitable path of treatment for disease diagnosis. Applying machine learning techniques for disease diagnosis using intelligent algorithms has been a hot research area of computer science. This paper throws a light on the comprehensive survey on the machine learning applications in the medical disease prognosis during the past decades


Author(s):  
Upendra Kumar

Computers in disease prescreening are utilized to interpret medical information. This is known as computer-aided pre-screening tool (CAPST). CAPST helps in improving the accuracy of diagnosis in medicine. The medical experts usually take the outcome of the CAPST as a second opinion to make the final diagnostic decisions. Fast and accurate prediction of disease risk and diagnosis is crucial step for the successful treatment of an individual. The AI-based machine learning technology has undergone significant developments over the past few years and is successfully used in many intelligent applications covering problems of variety of domains. One of the most stimulating questions is whether these techniques can be successfully applied to medicine in disease pre-screening and diagnosis and what kind of data it requires to be trained and learned. There are so many real-time examples of the problems where machine learning methods are applied successfully, especially in medicine. Many of them showed significant improvement in classification accuracy.


Sign in / Sign up

Export Citation Format

Share Document