Ensemble Feature Selection Method Based on Bio-inspired Algorithms for Multi-objective Classification Problem

Author(s):  
Mohammad Aizat Basir ◽  
Mohamed Saifullah Hussin ◽  
Yuhanis Yusof
Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1290
Author(s):  
Le Wang ◽  
Yuelin Gao ◽  
Shanshan Gao ◽  
Xin Yong

In solving classification problems in the field of machine learning and pattern recognition, the pre-processing of data is particularly important. The processing of high-dimensional feature datasets increases the time and space complexity of computer processing and reduces the accuracy of classification models. Hence, the proposal of a good feature selection method is essential. This paper presents a new algorithm for solving feature selection, retaining the selection and mutation operators from traditional genetic algorithms. On the one hand, the global search capability of the algorithm is ensured by changing the population size, on the other hand, finding the optimal mutation probability for solving the feature selection problem based on different population sizes. During the iteration of the algorithm, the population size does not change, no matter how many transformations are made, and is the same as the initialized population size; this spatial invariance is physically defined as symmetry. The proposed method is compared with other algorithms and validated on different datasets. The experimental results show good performance of the algorithm, in addition to which we apply the algorithm to a practical Android software classification problem and the results also show the superiority of the algorithm.


2021 ◽  
Vol 15 (6) ◽  
pp. 1-24
Author(s):  
Dipanjyoti Paul ◽  
Rahul Kumar ◽  
Sriparna Saha ◽  
Jimson Mathew

The feature selection method is the process of selecting only relevant features by removing irrelevant or redundant features amongst the large number of features that are used to represent data. Nowadays, many application domains especially social media networks, generate new features continuously at different time stamps. In such a scenario, when the features are arriving in an online fashion, to cope up with the continuous arrival of features, the selection task must also have to be a continuous process. Therefore, the streaming feature selection based approach has to be incorporated, i.e., every time a new feature or a group of features arrives, the feature selection process has to be invoked. Again, in recent years, there are many application domains that generate data where samples may belong to more than one classes called multi-label dataset. The multiple labels that the instances are being associated with, may have some dependencies amongst themselves. Finding the co-relation amongst the class labels helps to select the discriminative features across multiple labels. In this article, we develop streaming feature selection methods for multi-label data where the multiple labels are reduced to a lower-dimensional space. The similar labels are grouped together before performing the selection method to improve the selection quality and to make the model time efficient. The multi-objective version of the cuckoo search-based approach is used to select the optimal feature set. The proposed method develops two versions of the streaming feature selection method: ) when the features arrive individually and ) when the features arrive in the form of a batch. Various multi-label datasets from various domains such as text, biology, and audio have been used to test the developed streaming feature selection methods. The proposed methods are compared with many previous feature selection methods and from the comparison, the superiority of using multiple objectives and label co-relation in the feature selection process can be established.


Sign in / Sign up

Export Citation Format

Share Document