Implications of Neutrino Mixing Data on Hierarchical Texture 2 Zero Mass Matrices

Author(s):  
Neelu Mahajan
2012 ◽  
Vol 27 (14) ◽  
pp. 1250079 ◽  
Author(s):  
HARALD FRITZSCH

We discuss the neutrino oscillations, using texture zero mass matrices for the leptons, including radiative correction. The neutrino mixing angle θ13 is calculated and agrees with the result of the new Daya Bay experiment.


1990 ◽  
Vol 331 (1) ◽  
pp. 213-243 ◽  
Author(s):  
Yoav Achiman ◽  
Jens Erler ◽  
Wolfgang Kalau

2015 ◽  
Vol 30 (28) ◽  
pp. 1550138 ◽  
Author(s):  
Harald Fritzsch

We discuss mass matrices with four texture zeros for the quarks and leptons. The three mixing angles for the quarks and leptons are functions of the fermion masses. The results agree with the experimental data. The ratio of the masses of the first two neutrinos is given by the solar mixing angle. The neutrino masses are calculated: [Formula: see text], [Formula: see text] and [Formula: see text].


2013 ◽  
Vol 28 (31) ◽  
pp. 1350131 ◽  
Author(s):  
SRINU GOLLU ◽  
K. N. DEEPTHI ◽  
R. MOHANTA

The recent results from Daya Bay and RENO reactor neutrino experiments have firmly established that the smallest reactor mixing angle θ13 is nonvanishing at the 5 σ level, with a relatively large value, i.e. θ13 ≈ 9°. Using the fact that the neutrino mixing matrix can be represented as [Formula: see text], where Ul and Uν result from the diagonalization of the charged lepton and neutrino mass matrices and Pν is a diagonal matrix containing the Majorana phases and assuming the tri-bimaximal (TBM) form for Uν, we investigate the possibility of accounting for the large reactor mixing angle due to the corrections of the charged lepton mixing matrix. The form of Ul is assumed to be that of CKM mixing matrix of the quark sector. We find that with this modification it is possible to accommodate the large observed reactor mixing angle θ13. We also study the implications of such corrections on the other phenomenological observables.


2007 ◽  
Vol 16 (05) ◽  
pp. 1383-1393 ◽  
Author(s):  
HIDEYUKI SAWANAKA

Realistic quark masses and mixing angles are obtained applying the successful A4 family symmetry for leptons, motivated by the quark-lepton assignments of SU (5). The A4 symmetry is suitable to give tri-bimaximal neutrino mixing matrix which is consistent with current experimental data. We study new scenario for the quark sector with the A4 symmetry.


2015 ◽  
Vol 30 (13) ◽  
pp. 1530035 ◽  
Author(s):  
S. T. Petcov ◽  
I. Girardi ◽  
A. V. Titov

Using the fact that the neutrino mixing matrix [Formula: see text], where Ue and Uν result from the diagonalization of the charged lepton and neutrino mass matrices, we analyze the predictions based on the sum rules which the Dirac phase δ present in U satisfies when Uν has a form dictated by, or associated with, discrete flavor symmetries and Ue has a "minimal" form (in terms of angles and phases it contains) that can provide the requisite corrections to Uν, so that the reactor, atmospheric and solar neutrino mixing angles θ13, θ23 and θ12 have values compatible with the current data.


2014 ◽  
Vol 29 (21) ◽  
pp. 1444005 ◽  
Author(s):  
Samandeep Sharma ◽  
Priyanka Fakay ◽  
Gulsheen Ahuja ◽  
Manmohan Gupta

The issue of texture specific mass matrices has been discussed by incorporating Weak Basis transformations and the concept of "naturalness." Interestingly, we find that starting from the most general mass matrices, one can arrive at texture four zero mass matrices which can fit both quark as well as lepton mixing data and are similar to the original Fritzsch ansatze.


Sign in / Sign up

Export Citation Format

Share Document