reactor neutrino
Recently Published Documents


TOTAL DOCUMENTS

265
(FIVE YEARS 50)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Vol 104 (9) ◽  
Author(s):  
Zhiyuan Chen ◽  
Xin Zhang ◽  
Zeyuan Yu ◽  
Jun Cao ◽  
Changgen Yang

Author(s):  
Abdel Pérez-Lorenzana

Exchange [Formula: see text] symmetry in the effective Majorana neutrino mass matrix does predict a maximal mixing for atmospheric neutrino oscillations asides to a null mixing that cannot be straightforwardly identified with reactor neutrino oscillation mixing, [Formula: see text], unless a specific ordering is assumed for the mass eigenstates. Otherwise, a nonzero value for [Formula: see text] is predicted already at the level of an exact symmetry. In this case, solar neutrino mixing and scale, as well as the correct atmospheric mixing arise from the breaking of the symmetry. I present a mass matrix proposal for normal hierarchy that realizes this scenario, where the smallness of [Formula: see text] is naturally given by the parameter [Formula: see text] and the solar mixing is linked to the smallness of [Formula: see text]. The proposed matrix remains stable under renormalization effects and it also allows to account for CP violation within the expected region without further constrains.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Angel Abusleme ◽  
Thomas Adam ◽  
Shakeel Ahmad ◽  
Rizwan Ahmed ◽  
Sebastiano Aiello ◽  
...  

AbstractThe OSIRIS detector is a subsystem of the liquid scintillator filling chain of the JUNO reactor neutrino experiment. Its purpose is to validate the radiopurity of the scintillator to assure that all components of the JUNO scintillator system work to specifications and only neutrino-grade scintillator is filled into the JUNO Central Detector. The aspired sensitivity level of $$10^{-16}\hbox { g/g}$$ 10 - 16 g/g of $$^{238}\hbox {U}$$ 238 U and $$^{232}\hbox {Th}$$ 232 Th requires a large ($$\sim 20\,\hbox {m}^3$$ ∼ 20 m 3 ) detection volume and ultralow background levels. The present paper reports on the design and major components of the OSIRIS detector, the detector simulation as well as the measuring strategies foreseen and the sensitivity levels to U/Th that can be reached in this setup.


2021 ◽  
pp. 2130021
Author(s):  
David E. Jaffe

With the end of Daya Bay experimental operations in December 2020, I review the history, discoveries, measurements and impact of the Daya Bay reactor neutrino experiment in China.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
André de Gouvêa ◽  
Valentina De Romeri ◽  
Christoph A. Ternes

Abstract Reactor experiments are well suited to probe the possible loss of coherence of neutrino oscillations due to wave-packets separation. We combine data from the short-baseline experiments Daya Bay and the Reactor Experiment for Neutrino Oscillation (RENO) and from the long baseline reactor experiment KamLAND to obtain the best current limit on the reactor antineutrino wave-packet width, σ > 2.1 × 10−4 nm at 90% CL. We also find that the determination of standard oscillation parameters is robust, i.e., it is mostly insensitive to the presence of hypothetical decoherence effects once one combines the results of the different reactor neutrino experiments.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Yong Du ◽  
Hao-Lin Li ◽  
Jian Tang ◽  
Sampsa Vihonen ◽  
Jiang-Hao Yu

Abstract The Standard Model Effective Field Theory (SMEFT) provides a systematic and model-independent framework to study neutrino non-standard interactions (NSIs). We study the constraining power of the on-going neutrino oscillation experiments T2K, NOνA, Daya Bay, Double Chooz and RENO in the SMEFT framework. A full consideration of matching is provided between different effective field theories and the renormalization group running at different scales, filling the gap between the low-energy neutrino oscillation experiments and SMEFT at the UV scale. We first illustrate our method with a top- down approach in a simplified scalar leptoquark model, showing more stringent constraints from the neutrino oscillation experiments compared to collider studies. We then provide a bottom-up study on individual dimension-6 SMEFT operators and find NSIs in neutrino experiments already sensitive to new physics at ∼20 TeV when the Wilson coefficients are fixed at unity. We also investigate the correlation among multiple operators at the UV scale and find it could change the constraints on SMEFT operators by several orders of magnitude compared with when only one operator is considered. Furthermore, we find that accelerator and reactor neutrino experiments are sensitive to different SMEFT operators, which highlights the complementarity of the two experiment types.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
D. Aristizabal Sierra ◽  
V. De Romeri ◽  
L. J. Flores ◽  
D. K. Papoulias

Abstract Reactor neutrino experiments provide a rich environment for the study of axionlike particles (ALPs). Using the intense photon flux produced in the nuclear reactor core, these experiments have the potential to probe ALPs with masses below 10 MeV. We explore the feasibility of these searches by considering ALPs produced through Primakoff and Compton-like processes as well as nuclear transitions. These particles can subsequently interact with the material of a nearby detector via inverse Primakoff and inverse Compton-like scatterings, via axio-electric absorption, or they can decay into photon or electron-positron pairs. We demonstrate that reactor-based neutrino experiments have a high potential to test ALP-photon couplings and masses, currently probed only by cosmological and astrophysical observations, thus providing complementary laboratory-based searches. We furthermore show how reactor facilities will be able to test previously unexplored regions in the ∼MeV ALP mass range and ALP-electron couplings of the order of gaee ∼ 10−8 as well as ALP-nucleon couplings of the order of $$ {g}_{ann}^{(1)} $$ g ann 1 ∼ 10−9, testing regions beyond TEXONO and Borexino limits.


2021 ◽  
Vol 16 (02) ◽  
pp. P02025-P02025
Author(s):  
Y. Abreu ◽  
Y. Amhis ◽  
L. Arnold ◽  
G. Barber ◽  
W. Beaumont ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document