A Decision Support System Using Rule-Based Expert System for COVID-19 Prediction and Diagnosis

2021 ◽  
pp. 119-140
Author(s):  
Ishan Ayus ◽  
Niranjan Panigrahi
2021 ◽  
Vol 11 (13) ◽  
pp. 5810
Author(s):  
Faisal Ahmed ◽  
Mohammad Shahadat Hossain ◽  
Raihan Ul Islam ◽  
Karl Andersson

Accurate and rapid identification of the severe and non-severe COVID-19 patients is necessary for reducing the risk of overloading the hospitals, effective hospital resource utilization, and minimizing the mortality rate in the pandemic. A conjunctive belief rule-based clinical decision support system is proposed in this paper to identify critical and non-critical COVID-19 patients in hospitals using only three blood test markers. The experts’ knowledge of COVID-19 is encoded in the form of belief rules in the proposed method. To fine-tune the initial belief rules provided by COVID-19 experts using the real patient’s data, a modified differential evolution algorithm that can solve the constraint optimization problem of the belief rule base is also proposed in this paper. Several experiments are performed using 485 COVID-19 patients’ data to evaluate the effectiveness of the proposed system. Experimental result shows that, after optimization, the conjunctive belief rule-based system achieved the accuracy, sensitivity, and specificity of 0.954, 0.923, and 0.959, respectively, while for disjunctive belief rule base, they are 0.927, 0.769, and 0.948. Moreover, with a 98.85% AUC value, our proposed method shows superior performance than the four traditional machine learning algorithms: LR, SVM, DT, and ANN. All these results validate the effectiveness of our proposed method. The proposed system will help the hospital authorities to identify severe and non-severe COVID-19 patients and adopt optimal treatment plans in pandemic situations.


2018 ◽  
Vol 11 (1) ◽  
pp. 119-123 ◽  
Author(s):  
Meenakshi Malik ◽  
Mukesh Sehgal ◽  
A.K. Kanojia ◽  
R. V. Singh

2015 ◽  
Author(s):  
Νικόλαος Κατσιώτης

Στην παρούσα Διδακτορική Διατριβή παρουσιάζεται η διερεύνηση των δυνατοτήτων συμβολής μεθόδων μη-καταστρεπτικού ελέγχου στη διάγνωση και στον έλεγχο ποιότητας δομικών υλικών με έμφαση στην Αειφόρο Κατασκευή. Ως προς το παραπάνω σκοπό, πραγματοποιήθηκε εκτενής μελέτη των υπό έρευνα δομικών υλικών (δοκιμίων σκυροδεμάτων 5 συνθέσεων, έκαστη σύνθεση αποτελούμενη από διαφορετικό τύπο, ποιότητα και κατηγορία αντοχών του περιεχόμενου τσιμέντου) μέσω τόσο συμβατικών/παραδοσιακών (καταστρεπτικών) τεχνικών ανάλυσης όσο και καινοτόμων μη-καταστρεπτικών τεχνικών χαρακτηρισμού.Η μέθοδος που αναπτύχθηκε στα πλαίσια της παρούσας Διδακτορικής Διατριβής αφορά την συνδυαστική και συνεργατική εφαρμογή των μη-καταστρεπτικών τεχνικών της Μικροσκοπίας Οπτικών Ινών και της Ψηφιακής Επεξεργασίας Εικόνας. Περισσότερο συγκεκριμένα, παρασκευάσθηκαν δοκίμια σκυροδεμάτων στον ξυλότυπο (“καλούπι”) των οποίων είχε προσαρμοστεί κατάλληλο πλαίσιο (“παράθυρο”) παρατήρησης και λήψης εικόνων μέσω του οποίου εφαρμόστηκε Μικροσκοπία Οπτικών Ινών σε τακτά διαστήματα πραγματικού χρόνου (“real-time”) κατά την διάρκεια της τοποθέτησης/σκυροδέτησης αυτών. Εν συνεχεία, οι εικόνες υφής αυτές επεξεργάστηκαν κατάλληλα μέσω αλγορίθμου Ψηφιακής Επεξεργασίας Εικόνας (ο οποίος αναπτύχθηκε και αριστοποιήθηκε για τις ανάγκες της συγκεκριμένης Έρευνας και εφαρμογής) σε υπολογιστικό περιβάλλον MatLab®, και εξήχθησαν ποσοτικές πληροφορίες χαρακτηρισμού της δεδομένης εικόνας ανά χρονική στιγμή λήψης αυτής.Τα πειραματικά αποτελέσματα αυτά τροφοδοτήθηκαν αυτομάτως (και σε πραγματικό χρόνο - “real-time”) σε κατάλληλη πληροφοριακή γνωσιακή βάση δεδομένων, η οποία αποτέλεσε το έναυσμα για περαιτέρω αξιοποίηση των περιεχόμενων πληροφοριών, υπό την μορφή εύρεσης και έκφρασης κατάλληλου μαθηματικού συσχετισμού (“correlation”). Εν συνεχεία και βάσει του αναπτυχθέντος ημιεμπειρικού μαθηματικού μοντέλου, έλαβε χώρα μετάβαση σε έμπειρο σύστημα υποστήριξης απόφασης (“expert system”), ικανό να ανταποκρίνεται στις ανάγκες της Κατασκευής (σε πραγματικό τόπο, χρόνο και κλίμακα).Στα Συμπεράσματα της παρούσας Διδακτορικής Διατριβής συμπεριλαμβάνεται η επιτυχής συνδυαστική αξιοποίηση μη-καταστρεπτικών τεχνικών Μικροσκοπίας Οπτικών Ινών και Ψηφιακής Επεξεργασίας Εικόνας ως προς την λήψη αντιπροσωπευτικών επιφανειακών εικόνων υφής/μικροδομής (“image patterns”) σε ορισμένες χρονικές στιγμές αμέσως μετά την έναρξη της σκυροδέτησης (αρχή,+ 5, +10, +15, +20, +25, +30, +40, +50, 60λεπτά). Οι ληφθείσες ψηφιακά επεξεργασμένες εικόνες μικροδομής συσχετίστηκαν (μέσω εκτεταμένου προγράμματος γραμμικών παλινδρομήσεων) με τις τελικές μηχανικές αντοχές των παραχθέντων σκυροδεμάτων και συμπεραίνεται η εντονότερη βαρύτητα/σχέση των μορφολογικών παραμέτρων του “κεντροειδούς” και του “αριθμού Euler” (καθόλες τις χρονικές στιγμές), σε μεγέθυνση 25x και όριο κατωφλίωσης/threshold 110. Πέραν αυτών, η αποτίμηση της μικροδομής από τα ληφθέντα image pattern ενσωματώνεται επιτυχώς σε εξειδικευμένη γνωσιολογική βάση δεδομένων και η Γνώση αυτή μετατρέπεται (μέσω τεχνητής νοημοσύνης και εφαρμογής γενετικών αλγορίθμων σε περιβάλλον MatLab®) σε έμπειρο σύστημα (“expert system”) υποβοήθησης/υποστήριξης αποφάσεων (“decision support system”) Αειφορίας στην Κατασκευή.


2018 ◽  
Vol 8 (2) ◽  
pp. 81
Author(s):  
Nur Aini Rakhmawati ◽  
Aditya Septa Budi ◽  
Faizal Johan Altetiko ◽  
Fajar Ramadhani ◽  
Nanda Kurnia Wardati ◽  
...  

Angkotin is a system that provides an alternative for urban transport to not only be used for passenger transportation, but also as freight service. Therefore, it needs a decision support system for taking order to delivery to the destination according to each criterion from urban transportation. The method used to develop this decision support system is a rule-based system. The result of this research is a decision support system that can help public transportation to find orders that can be taken based on four factors, such as distance, direction, route code, and status of storage capacity. Based on these four factors, the system can provide an order recommendation under the appropriate conditions through the Angkotin application. Based on our experiment, our system performs on 7 seven cases as expected.   


2016 ◽  
Vol 24 (3) ◽  
pp. 298-305 ◽  
Author(s):  
Anahí Ocampo-Melgar ◽  
Aida Valls ◽  
Jose Antonio Alloza ◽  
Susana Bautista

2020 ◽  
Vol 9 (3) ◽  
pp. 13
Author(s):  
Manuel Bern ◽  
Edward Lusk

In execution of PCAOB audits at the Planning and Substantive Phases, forecasts of various financial account balances are often used to collect information on the veracity of the client’s final reported balances. One of the forecast methods widely acclaimed in the academic context is the Rule Based Forecasting [RBF] model of Collopy and Armstrong [C&A]. However, for the most part, the RBF has not found its way into the panoply of the auditor. In our practice-oriented experiential context, the reason for this seems to be the lack of an enabling Decision Support System[DSS] usually needed to create reliable RBF-forecasts in a timely manner needed at the Substantive Phase of the audit. Focus In this report, we detail a GUI-friendly DSS, the VBA-programming of which is based upon a 2013 revision of an updated C&A model offered by Adya and Lusk. The DSS is called: The Reduced Rules: Rule Based Forecasting: Decision Support System [RR:RBF:DSS]. We provide a comprehensive example of the RR:RBF:DSS in a PCAOB-audit context for a Caterpillar™, Inc.Ò account Panel downloaded from Bloomberg™. This example, carefully details all of the numerous User Form-Launch platforms as well as discusses the statistical and operational Rule-scoring functionalities of the RR:RBF:DSS. The RR:RBF:DSS is available as a download without cost or restrictions on its use.


Sign in / Sign up

Export Citation Format

Share Document