Comparison of Numerical and Semi-analytical Dynamic Results for Inclined Beam Under Moving Load

Author(s):  
D. S. Yang ◽  
C. M. Wang
2009 ◽  
Vol 60 (3) ◽  
pp. 277-293 ◽  
Author(s):  
Ahmad Mamandi ◽  
Mohammad H. Kargarnovin ◽  
Davood Younesian

2009 ◽  
Vol 181 ◽  
pp. 012094 ◽  
Author(s):  
A Mamandi ◽  
M H Kargarnovin ◽  
D Younesian

2020 ◽  
Vol 3 (8) ◽  
pp. 28-34
Author(s):  
N. V. IVANITSKAYA ◽  
◽  
A. K. BAYBULOV ◽  
M. V. SAFRONCHUK ◽  
◽  
...  

In many countries economic policy has been paying increasing attention to the modernization and development of transport infrastructure as a measure of macroeconomic stimulation. Tunnels as an important component of transport infrastructure save a lot of logistical costs. It stimulates increasing freight and passenger traffic as well as the risks of the consequences of unforeseen overloads. The objective of the paper is to suggest the way to reduce operational risks of unforeseen moving load by modeling of the stress-strain state of a transport tunnel under growing load for different conditions and geophysical parameters. The article presents the results of a study of the stress-strain state (SSS) of a transport tunnel exposed to a mobile surface load. Numerical experiments carried out in the ANSYS software package made it possible to obtain diagrams showing the distribution of equivalent stresses (von Mises – stresses) according to the finite element model of the tunnel. The research results give grounds to assert that from external factors the stress state of the tunnel is mainly influenced by the distance to the moving load. The results obtained make it possible to predict in advance the parameters of the stress-strain state in the near-contour area of the tunnel and use the results in the subsequent design of underground facilities, as well as to increase their reliability and operational safety. This investigation gives an opportunity not only to reduce operational risks at the design stage, but to choose an optimal balance between investigation costs and benefits of safety usage period prolongation.


PAMM ◽  
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Helmut J. Holl ◽  
Lukas Keplinger
Keyword(s):  

2021 ◽  
pp. 108128652110238
Author(s):  
Barış Erbaş ◽  
Julius Kaplunov ◽  
Isaac Elishakoff

A two-dimensional mixed problem for a thin elastic strip resting on a Winkler foundation is considered within the framework of plane stress setup. The relative stiffness of the foundation is supposed to be small to ensure low-frequency vibrations. Asymptotic analysis at a higher order results in a one-dimensional equation of bending motion refining numerous ad hoc developments starting from Timoshenko-type beam equations. Two-term expansions through the foundation stiffness are presented for phase and group velocities, as well as for the critical velocity of a moving load. In addition, the formula for the longitudinal displacements of the beam due to its transverse compression is derived.


Sign in / Sign up

Export Citation Format

Share Document