surface load
Recently Published Documents


TOTAL DOCUMENTS

205
(FIVE YEARS 49)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 13 (3) ◽  
pp. 22-28
Author(s):  
Delia Cerlinca ◽  
◽  
Sergiu Spinu ◽  
◽  

Machined surfaces can be described by heights and wavelengths of the surface asperities that show a statistical variation. Considering that a regular wavy surface with a sinusoidal profile is the crudest model for a rough surface, studying the contact of regular wavy surfaces is a good approximation for the contact of nominally flat surfaces. Such contact problems exhibit periodicity that can be simulated with the aid of computational techniques derived for contact mechanics in the frequency domain. The displacement calculation, which is a necessary step in the resolution of the contact problem, is mathematically a convolution product that can be calculated in the frequency domain with increased computational efficiency. The displacement induced by a unit surface load can be expressed in the frequency domain by the frequency response functions, which are counterparts of the space domain solutions to half-space fundamental problems such as the Boussinesq problem. The displacement induced by a periodic pressure distribution can be computed by executing the convolution product between the frequency response function and pressure on a single period. It should be noted that the convolution calculation in the spectral domain implies that the contributions of all neighbouring pressure periods are accounted for. The need to treat numerically only a single period results in remarkable computational efficiency, allowing for high density meshes that can capture the essential features of any textured real surface. The displacement calculation promotes the solution of the contact problem by an iterative approach. The advanced method is benchmarked against existing analytical solutions for the 3D contact of surfaces possessing two-dimensional waviness. This essentially deterministic model, supported by a direct numerical solution that can be obtained for samples of real rough surfaces, presents itself as a worthy alternative to the existing statistical models for rough contact interaction.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 311
Author(s):  
Hao Chang ◽  
Shiming Hong ◽  
Chuan Wang ◽  
Guangjie Peng ◽  
Fengyi Fan ◽  
...  

Self-priming pumps, important fluid equipment, are widely used in the disaster relief and emergency fields. Meanwhile, the impeller is the only rotational unit of the self-priming pump, which plays an essential part in the power capability of the pump. In this paper, impellers with different hub radii are proposed; by comparing the internal flow characteristics, blade surface load, pressure pulsation characteristics, and radial force distribution of each scheme, the relationship between transient characteristics and hub radius is obtained. The results present that the impeller with a large hub radius can not only weaken the pressure pulsation, blade surface load, and radial force distribution, but also improve the ability of the blade to work on the internal flow field. Finally, the relevant hydraulic experiment is conducted, with the difference between the experiment and calculation below 3%, which ensures the accuracy of the calculation results.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5521
Author(s):  
Jianping Liu ◽  
Hong Zhang ◽  
Baodong Wang ◽  
Dong Zhang ◽  
Beilei Ji ◽  
...  

With continued urbanization in China, the construction of urban gas pipelines is increasing, and the safety of gas pipelines are also increasingly affected by urban development and the increased scope of buildings and roads. Pipes with defects are more likely to fail under the surface loads. In this study, uniaxial tensile tests of high-density polyethylene (HDPE) pipes were carried out to obtain the real material parameters of pipe. A pipeline-soil interaction finite element model of HDPE pipeline with defects under surface load was established. The failure mechanism of the urban gas pipeline was studied and the influence of parameters such as internal pressure, defect position, defect depth on the mechanical behavior, and failure of pipelines were analyzed. A failure criterion for HDPE pipes with defects under surface load was proposed based on the limit-state curves obtained under different working conditions. Furthermore, an accurate and efficient fitness-for-service assessment procedure of pipes with defects under surface load was proposed. The results showed that maximum Mises stress of the pipeline gradually increased with increasing surface load and the position of maximum stress changed from the top and bottom of the pipe to the defect position and both sides of the pipe. Finally, when Mises stress of the HDPE pipe exceeds the yield limit, failure will occur. Internal pressure, defect location, and defect depth were found to influence the failure process and critical surface load of the pipeline. Safety evaluation curves of the gas pipeline with defects under surface load were obtained by calculating the critical failure load of the pipeline under various working conditions. Finally, a nonlinear fitting method was used to derive a formula for calculating the critical surface load under different defect parameters. The proposed method provides a useful reference for urban gas pipeline safety management.


2021 ◽  
Vol 4 (11(112)) ◽  
pp. 92-98
Author(s):  
Andrii Zahorulko ◽  
Aleksey Zagorulko ◽  
Valeriy Mykhailov ◽  
Eldar Ibaiev

This paper reports the improved rotor-film evaporator with the lower arrangement of the separating space, the auger-type discharge of concentrated organic fruit and berry paste, and preheating the puree with secondary steam. The working surface of the evaporator is heated by a flexible film resistive electric heater of the radiating type with an insulating outer surface. Peltier elements installed in the device make it possible to provide low-voltage power for exhaust fans from the thermal secondary steam. The puree fed for processing is preheated by 8...10 °С by the heat from the concentrated product and secondary steam. For the experiment, fruit and berry blended puree from apples, quince, and black currants was used. The structural and mechanical properties of blended puree have been determined when the temperature changes within 55...75 °С, in particular, the effective viscosity varies in the range of 22...6 Pa∙s, the maximum shear stress ‒ 29...8 Pa. Effective regions in the fruit and berry puree concentration process have been established: Kmin=Vpaste/Vpuree=0.190; Kmax=Vpaste/Vpuree=0.725 When concentrating fruit and berry pastes with an initial solids content of 9...15 % to the resulting content (29...31 %), it is advisable to apply a surface load of 0.048...0.121 kg/m2s. By calculation, the reduction of the specific energy consumption for heating the volume of the product unit has been confirmed: a rotor-film evaporator – 547 kJ/kg over a period of 75 s, compared to the basic vacuum evaporator – 1,090 kJ/kg, respectively, over 1.08 hours. The results could be useful when designing evaporating equipment for rotor-film-type devices in order to concentrate various blends of fruit and berry raw materials under conditions of using the energy of secondary steam.


2021 ◽  
Author(s):  
Pedro Silva ◽  
Edwin A. Peraza Hernandez

Abstract This paper presents the modeling and design exploration of tensegrity plate mechanisms with the ability of dissipating energy arising from compressive loads. The tensegrity plates are comprised of an assembly of tensegrity prisms, each formed by three compressive bars self-equilibrated by a network of tensile strings. The plates transfer a uniform compressive surface load applied along their planform area to uniaxial tension and compression within their members. The energy dissipation capabilities of plates with strings formed by three different elastoplastic metals and a pseudoelastic shape memory alloy (SMA) are explored. The constitutive parameters of these materials are calibrated from experimental data, and finite element models of the plates are created. A Taguchi design of experiments is used to evaluate the main effects of different design parameters of the plates on their energy dissipation and residual deformation responses. Results indicate that plates of larger thickness, lower diameter, and higher complexities provide higher energy dissipation per unit mass. Pseudoelastic SMA strings were the only type of strings that provided cyclic energy dissipation without the emergence of residual displacements. The studied energy absorbing mechanisms can potentially be integrated in aerospace, automotive, and civil components designed to absorb and dissipate energy from vibrations or distributed compressive loads.


Author(s):  
Nguyen Van Chung ◽  
Nguyen Thanh Him ◽  
Bui Quoc Khiem ◽  
Pham Ngoc Tien

The scaled boundary finite element method (SBFEM) is a semi-analytical method, whose versatility, accuracy, and efficiency are not only equal to, but potentially better than the finite element method and the boundary element method for certain problems. This paper investigates the possibility of using an efficient high-order polynomial element in the SBFEM to form the approximation in the circumferential direction. The governing equations are formulated from the classical linear elasticity theory via the SBFEM technique. The scaled boundary finite element equations are formulated within a general framework integrating the influence of the distributed body source, mixed boundary conditions, contributions the side face with either prescribed surface load or prescribed displacement. The position of scaling center is considered for modeling problem. The proposed method is evaluated by solving two-dimensional linear problem. A selected set of results is reported to demonstrate the accuracy and convergence of the proposed method for solving problems in general boundary conditions.


Author(s):  
Michael G. Katona

AASHTO’s ad hoc method (AAM) for predicting free-field soil stress under a rectangular loading area is a simple and very useful tool for the analysis of buried culverts subject to vehicular wheel loads. AAM assumes the surface load spreads with soil depth into an ever-increasing rectangular area whose dimensions are controlled by a constant spread angle θ usually taken as 30°, denoted as AAM-30°. Both simplified and comprehensive culvert analysis procedures utilize AAM predictions for adjusting pressure distributions acting on the culvert periphery. Also, AAM-30° is routinely used to determine the two-wheel soil interaction depth, in which the combined effect of both axial wheels need to be considered. To date, a thorough accuracy analysis of AAM-30° has not been published in the open literature. This paper provides a unique and rigorous evaluation of AAM-30° using an exact solution from an elasticity-based model (EBM) of a homogeneous half-space with rectangular surface load. One key discovery is the depth parameter called y*, which is the soil depth at which AAM-30° peak-stress prediction exactly matches the exact EBM solution. Moreover, it is shown that y* may be determined by a simple, yet accurate formula that only depends on the square root of the load area. However, the investigation reveals that AAM-30° significantly underestimates peak stress in the shallow-depth zone 0 <  y < ½ y* by as much as 31.3% of the applied surface pressure. As this is a large nonconservative error it cannot be ignored. Accordingly, a very simple modification is introduced called AAM-θ*, in which θ* is a spread angle that linearly increases to 30° at soil depth ½ y* and thereafter θ* remains constant at 30°. An accuracy evaluation of AAM-θ* reveals an order of magnitude increase in accuracy in which the small residual error is conservative, not nonconservative. The paper concludes with discussions on applying AAM-θ* to the analysis of buried culverts when using either simple or finite element model solution procedures.


Sign in / Sign up

Export Citation Format

Share Document