Computational Intelligence in Drug Repurposing for COVID-19

Author(s):  
Manish Kumar Tripathi ◽  
Sujata Sharma ◽  
Tej P. Singh ◽  
A. S. Ethayathulla ◽  
Punit Kaur

Author(s):  
Sweta Mohanty ◽  
Md Harun AI. Rashid ◽  
Chandana Mohanty ◽  
Swati Swayamsiddha




2020 ◽  
Author(s):  
Shruti Koulgi ◽  
Vinod Jani ◽  
Mallikarjunachari Uppuladinne ◽  
Uddhavesh Sonavane ◽  
Asheet Kumar Nath ◽  
...  

<p>The COVID-19 pandemic has been responsible for several deaths worldwide. The causative agent behind this disease is the Severe Acute Respiratory Syndrome – novel Coronavirus 2 (SARS-nCoV2). SARS-nCoV2 belongs to the category of RNA viruses. The main protease, responsible for the cleavage of the viral polyprotein is considered as one of the hot targets for treating COVID-19. Earlier reports suggest the use of HIV anti-viral drugs for targeting the main protease of SARS-CoV, which caused SARS in the year 2002-03. Hence, drug repurposing approach may prove to be useful in targeting the main protease of SARS-nCoV2. The high-resolution crystal structure of 3CL<sup>pro</sup> (main protease) of SARS-nCoV2 (PDB ID: 6LU7) was used as the target. The Food and Drug Administration (FDA) approved and SWEETLEAD database of drug molecules were screened. The apo form of the main protease was simulated for a cumulative of 150 ns and 10 μs open source simulation data was used, to obtain conformations for ensemble docking. The representative structures for docking were selected using RMSD-based clustering and Markov State Modeling analysis. This ensemble docking approach for main protease helped in exploring the conformational variation in the drug binding site of the main protease leading to efficient binding of more relevant drug molecules. The drugs obtained as best hits from the ensemble docking possessed anti-bacterial and anti-viral properties. Small molecules with these properties may prove to be useful to treat symptoms exhibited in COVID-19. This <i>in-silico</i> ensemble docking approach would support identification of potential candidates for repurposing against COVID-19.</p>



2020 ◽  
Author(s):  
Sanaa Bardaweel

Recently, an outbreak of fatal coronavirus, SARS-CoV-2, has emerged from China and is rapidly spreading worldwide. As the coronavirus pandemic rages, drug discovery and development become even more challenging. Drug repurposing of the antimalarial drug chloroquine and its hydroxylated form had demonstrated apparent effectiveness in the treatment of COVID-19 associated pneumonia in clinical trials. SARS-CoV-2 spike protein shares 31.9% sequence identity with the spike protein presents in the Middle East Respiratory Syndrome Corona Virus (MERS-CoV), which infects cells through the interaction of its spike protein with the DPP4 receptor found on macrophages. Sitagliptin, a DPP4 inhibitor, that is known for its antidiabetic, immunoregulatory, anti-inflammatory, and beneficial cardiometabolic effects has been shown to reverse macrophage responses in MERS-CoV infection and reduce CXCL10 chemokine production in AIDS patients. We suggest that Sitagliptin may be beneficial alternative for the treatment of COVID-19 disease especially in diabetic patients and patients with preexisting cardiovascular conditions who are already at higher risk of COVID-19 infection.



Sign in / Sign up

Export Citation Format

Share Document