Exploiting Sediment- and Morpho-Dynamics in Coastal Adaptation Strategies to Sea-Level Rise: A Case Study of the Vietnamese Mekong Delta

2020 ◽  
pp. 107-132
Author(s):  
Thang Viet Nguyen ◽  
Kelly Shannon ◽  
Bruno De Meulder
Oceanography ◽  
2017 ◽  
Vol 30 (3) ◽  
pp. 98-109 ◽  
Author(s):  
Mead Allison ◽  
◽  
Charles Nittrouer ◽  
Andrea Ogston ◽  
Julia Mullarney ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1220 ◽  
Author(s):  
Luis Maria Abadie ◽  
Elisa Sainz de Murieta ◽  
Ibon Galarraga

Iberian coastal cities are subject to significant risks in the next decades due to climate change-induced sea-level rise. These risks are quite uncertain depending on several factors. In this article, we estimate potential economic damage in 62 Iberian coastal cities from 2020 to 2100 using regional relative sea-level rise data under three representative concentration pathways (RCP 8.5, RCP 4.5 and RCP 2.6). We analyze the expected accumulated damage costs if no adaptation actions take place and compare this scenario to the investment cost of some adaptation strategies being implemented. The results show that some adaptation strategies are less costly than the potential damage under inaction. In other words, it is economically rational to invest in adaptation even in a context of high uncertainty. These calculations are very relevant to inform climate change adaptation decisions and to better manage the risk posed by sea-level rise. Moreover, our findings show the importance of a good understanding of the shape of the sea-level rise and damage cost distributions to calculate the expected damage. We show that using the 50th percentile for these calculations is not adequate as it leads to a serious underestimation of expected damage and coastal risk.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1324
Author(s):  
David Revell ◽  
Phil King ◽  
Jeff Giliam ◽  
Juliano Calil ◽  
Sarah Jenkins ◽  
...  

Sea level rise increases community risks from erosion, wave flooding, and tides. Current management typically protects existing development and infrastructure with coastal armoring. These practices ignore long-term impacts to public trust coastal recreation and natural ecosystems. This adaptation framework models physical responses to the public beach and private upland for each adaptation strategy over time, linking physical changes in widths to damages, economic costs, and benefits from beach recreation and nature using low-lying Imperial Beach, California, as a case study. Available coastal hazard models identified community vulnerabilities, and local risk communication engagement prioritized five adaptation approaches—armoring, nourishment, living shorelines, groins, and managed retreat. This framework innovates using replacement cost as a proxy for ecosystem services normally not valued and examines a managed retreat policy approach using a public buyout and rent-back option. Specific methods and economic values used in the analysis need more research and innovation, but the framework provides a scalable methodology to guide coastal adaptation planning everywhere. Case study results suggest that coastal armoring provides the least public benefits over time. Living shoreline approaches show greater public benefits, while managed retreat, implemented sooner, provides the best long-term adaptation strategy to protect community identity and public trust resources.


2021 ◽  
Vol 13 (13) ◽  
pp. 7503
Author(s):  
Alexander Boest-Petersen ◽  
Piotr Michalak ◽  
Jamal Jokar Arsanjani

Anthropogenically-induced climate change is expected to be the contributing cause of sea level rise and severe storm events in the immediate future. While Danish authorities have downscaled the future oscillation of sea level rise across Danish coast lines in order to empower the coastal municipalities, there is a need to project the local cascading effects on different sectors. Using geospatial analysis and climate change projection data, we developed a proposed workflow to analyze the impacts of sea level rise in the coastal municipalities of Guldborgsund, located in Southeastern Denmark as a case study. With current estimates of sea level rise and storm surge events, the island of Falster can expect to have up to 19% of its landmass inundated, with approximately 39% of the population experiencing sea level rise directly. Developing an analytical workflow can allow stakeholders to understand the extent of expected sea level rise and consider alternative methods of prevention at the national and local levels. The proposed approach along with the choice of data and open source tools can empower other communities at risk of sea level rise to plan their adaptation.


2021 ◽  
Author(s):  
Frances E. Dunn ◽  
Philip S. J. Minderhoud

<p>As one of the largest deltas in the world, the Mekong delta is home to over 17 million people and supports internationally important agriculture. Recently deposited sediment compacts and causes subsidence in deltas, so they require regular sediment input to maintain elevation relative to sea level. These processes are complicated by human activities, which prevent sediment deposition indirectly through reducing fluvial sediment supply and directly through the construction of flood defence infrastructure on deltas, impeding floods which deliver sediment to the land. Additionally, anthropogenic activities increase the rate of subsidence through the extraction of groundwater and other land-use practices.</p><p>This research shows the potential for fluvial sediment delivery to compensate for sea-level rise and subsidence in the Mekong delta over the 21st century. We use detailed elevation data and subsidence scenarios in combination with regional sea-level rise and fluvial sediment flux projections to quantify the potential for maintaining elevation relative to sea level in the Mekong delta. We present four examples of localised sedimentation scenarios in specific areas, for which we quantified the potential effectiveness of fluvial sediment deposition for offsetting relative sea-level rise. The presented sediment-based adaptation strategies are complicated by existing land use, therefore a change in water and sediment management is required to effectively use natural resources and employ these adaptation methods. The presented approach could be an exemplar to assess sedimentation strategy feasibility in other delta systems worldwide that are under threat from sea-level rise.</p>


2019 ◽  
Vol 653 ◽  
pp. 1522-1531 ◽  
Author(s):  
Rafael J. Bergillos ◽  
Cristobal Rodriguez-Delgado ◽  
Gregorio Iglesias

Sign in / Sign up

Export Citation Format

Share Document