Numerical Flux Functions for Ideal Gases

Author(s):  
Keiichi Kitamura
Keyword(s):  
Author(s):  
U. S. Vevek ◽  
B. Zang ◽  
T. H. New

AbstractA hybrid numerical flux scheme is proposed by adapting the carbuncle-free modified Harten-Lax-van Leer contact (HLLCM) scheme to smoothly revert to the Harten-Lax-van Leer contact (HLLC) scheme in regions of shear. This hybrid scheme, referred to as the HLLCT scheme, employs a novel, velocity-based shear sensor. In contrast to the non-local pressure-based shock sensors often used in carbuncle cures, the proposed shear sensor can be computed in a localized manner meaning that the HLLCT scheme can be easily introduced into existing codes without having to implement additional data structures. Through numerical experiments, it is shown that the HLLCT scheme is able to resolve shear layers accurately without succumbing to the shock instability.


2010 ◽  
Vol 91 (6) ◽  
pp. 67003 ◽  
Author(s):  
J. Polonyi
Keyword(s):  

2014 ◽  
Vol 67 ◽  
pp. 285-290 ◽  
Author(s):  
K. Ambika ◽  
R. Radha ◽  
V.D. Sharma

Author(s):  
J. B. Young ◽  
R. C. Wilcock

This paper is Part I of a study concerned with developing a formal framework for modelling air-cooled gas turbine cycles and deals with basic thermodynamic issues. Such cycles involve gas mixtures with varying composition which must be modelled realistically. A possible approach is to define just two components, air and gas, the latter being the products of stoichiometric combustion of the fuel with air. If these components can be represented as ideal gases, the entropy increase due to compositional mixing, although a true exergy loss, can be ignored for the purpose of performance prediction. This provides considerable simplification. Consideration of three idealised simple cycles shows that the introduction of cooling with an associated thermal mixing loss does not necessarily result in a loss of cycle efficiency. This is no longer true when real gas properties and turbomachinery losses are included. The analysis clarifies the role of the cooling losses and shows the importance of assessing performance in the context of the complete cycle. There is a strong case for representing the cooling losses in terms of irreversible entropy production as this provides a formalised framework, clarifies the modelling difficulties and aids physical interpretation. Results are presented which show the effects on performance of varying cooling flowrates and cooling losses. A comparison between simple and reheat cycles highlights the rôle of the thermal mixing loss. Detailed modelling of the heat transfer and cooling losses is discussed in Part II of this paper.


Author(s):  
Tobias Pröll ◽  
Hermann Hofbauer

A simulation tool for gasification based processes is presented for an equation-oriented, steady state modelling environment. The approach aims at an adequate description of phenomena linked to gasification. Background information is provided regarding the structure of the framework, thermodynamic data processing, and on the formulation of the model equations. The implemented substance streams are water/steam, ideal gases, inorganic solids, and organic mixtures. The models are based upon mass and energy balances and feature thermodynamic considerations. The addition of correlations for fluid dynamics or chemical kinetics is generally possible but not within the focus of this paper. The key-aspects of the typical unit-models, like pumps, turbines, heat exchangers, separators and chemical reactors are highlighted. The model of a dual-fluidized bed biomass gasifier is presented in detail. In a final case study, the suitability of the simulation tool is demonstrated for the description of the gasification-based biomass combined heat and power plant in Güssing/Austria.


Author(s):  
Gerard A. Ateshian ◽  
Brandon Zimmerman

Abstract Mixture theory models continua consisting of multiple constituents with independent motions. In constrained mixtures all constituents share the same velocity but they may have different reference configurations. The theory of constrained reactive mixtures was formulated to analyze growth and remodeling in living biological tissues. It can also reproduce and extend classical frameworks of damage mechanics and viscoelasticity under isothermal conditions, when modeling bonds that can break and reform. This study focuses on establishing the thermodynamic foundations of constrained reactive mixtures under more general conditions, for arbitrary reactive processes where temperature varies in time and space. By incorporating general expressions for reaction kinetics, it is shown that the residual dissipation statement of the Clausius-Duhem inequality must include a reactive power density, while the axiom of energy balance must include a reactive heat supply density. Both of these functions are proportional to the molar production rate of a reaction, and they depend on the chemical potentials of the mixture constituents. We present novel formulas for the classical thermodynamic concepts of energy of formation and heat of reaction, making it possible to evaluate the heat supply generated by reactive processes from the knowledge of the specific free energy of mixture constituents as well as the reaction rate. We illustrate these novel concepts with mixtures of ideal gases, and isothermal reactive damage mechanics and viscoelasticity, as well as reactive thermoelasticity. This framework facilitates the analysis of reactive tissue biomechanics and physiological and biomedical engineering processes where temperature variations cannot be neglected.


Author(s):  
Chanyoung Park ◽  
Samaun Nili ◽  
Justin Mathew ◽  
Frederick Ouellet ◽  
Rahul Koneru ◽  
...  

Abstract Uncertainty quantification (UQ) is an important step in the verification and validation of scientific computing. Validation is often inconclusive when uncertainty is larger than an acceptable range for both simulation and experiment. Therefore, uncertainty reduction (UR) is important to achieve meaningful validation. A unique approach in this paper is to separate model error from uncertainty such that UR can reveal the model error. This paper aims to share lessons learned from UQ and UR of a horizontal shock tube simulation, whose goal is to validate the particle drag force model for the compressible multiphase flow. Firstly, simulation UQ revealed the inconsistency in simulation predictions due to the numerical flux scheme, which was clearly shown using the parametric design of experiments. By improving the numerical flux scheme, the uncertainty due to inconsistency was removed, while increasing the overall prediction error. Secondly, the mismatch between the geometry of the experiments and the simplified 1D simulation model was identified as a lack of knowledge. After modifying simulation conditions and experiments, it turned out that the error due to the mismatch was small, which was unexpected based on expert opinions. Lastly, the uncertainty in the initial volume fraction of particles was reduced based on rigorous UQ. All these UR measures worked together to reveal the hidden modeling error in the simulation predictions, which can lead to a model improvement in the future. We summarized the lessons learned from this exercise in terms of empty success, useful failure, and deceptive success.


Sign in / Sign up

Export Citation Format

Share Document