Comparing the Axial Performance of Screw Pile with Ordinary Piles in Soft Clay Layer Overlaying Sandy Soil

Author(s):  
Hassan Obaid Abbas ◽  
Omar Kareem Ali
Keyword(s):  
2019 ◽  
Vol 5 (8) ◽  
pp. 1788-1798 ◽  
Author(s):  
Omar Kareem Ali ◽  
Hassan O. Abbas

Screw piles are widely used in a variety engineering applications supplying stability against compression, overturning moment, uplift tension, and horizontal loads. Screw pile is a famous solution for support light structures, roads and rail signs which have relatively low-capacity foundation. In this study, the behavior of circular (10) mm solid screw pile models embedded in a bed of soft clay soil covering a layer of sandy soil has been studied. The 200 mm thick sand layer was compacted in a steel container with a diameter of 300 mm into four sublayers. The sandy soil layer was compacted at a relative density of 70%. The 300 mm thick soft clay soil bed with Cu (30) kPa was compacted in six sub-layers on the sandy bottom layer. Model tests are carried out with screw piles with a length of 300 mm, 350 mm and 400 mm and a helix diameter of 30 mm. Also, single and double helix and different S/Dh ratio were used for these piles and a comparative study between screw piles and ordinary piles (without helices) is accomplished. This study revealed that introducing screw pile of double helix increases its bearing capacity in soft clay soil by up to a (4-8) % as compared to a single helix screw pile. The results showed that the behavior of screw pile essentially depends on the geometric properties of the pile. According to the achievements, compressive load capacity of screw piles depends on embedded length, spacing ratio (S/Dh) and number of helical plates.


2000 ◽  
Vol 37 (6) ◽  
pp. 1265-1271 ◽  
Author(s):  
J S Sharma ◽  
D Xiao

Installation of prefabricated vertical drains using a mandrel causes disturbance of clay surrounding the drain, resulting in a "smear" zone of reduced permeability. In this paper, an attempt is made to characterize the smear zone using large-scale laboratory model tests. Two tests, simulating the cases of "no smear" and "with smear," were conducted. Excess pore-water pressures were monitored at seven different locations along the radial direction. In addition, undisturbed samples were collected at various locations in the clay layer for conducting oedometer tests. The distribution of excess pore pressure due to drain installation gave a clear indication of the extent of the smear zone. The effect of reconsolidation on the properties of clay was found to be much greater than that of the remoulding of the clay. The extent of the smear zone was also confirmed from the change in permeability of the clay layer in the smear zone obtained from oedometer tests. The radius of the smear zone is about four times that of the mandrel, and the horizontal permeability of the clay layer in the smear zone is approximately 1.3 times smaller than that in the intact zone.Key words: consolidation, permeability, smear zone, soft clay, vertical drains.


2021 ◽  
Vol 7 (4) ◽  
pp. 730-746
Author(s):  
Amanpreet Kaur ◽  
Harvinder Singh ◽  
J. N. Jha

This paper presents the results of three dimensional finite element analysis of laterally loaded pile groups of configuration 1×1, 2×1 and 3×1, embedded in two-layered soil consisting of soft clay at liquid limit overlying dense sand using Plaxis 3D. Effects of variation in pile length (L) and clay layer thickness (h) on lateral capacity and bending moment profile of pile foundations were evaluated by employing different values of pile length to diameter ratio (L/D) and ratio of clay layer thickness to pile length (h/L) in the analysis. Obtained results indicated that the lateral capacity reduces non-linearly with increase in clay layer thickness. Larger decrease was observed in group piles. A non-dimensional parameter Fx ratio was defined to compare lateral capacity in layered soil to that in dense sand, for which a generalized expression was derived in terms of h/L ratio and number of piles in a group. Group effect on lateral resistance and maximum bending moment was observed to become insignificant for clay layer thickness exceeding 40% of pile length. For a fixed value of clay layer thickness, lateral capacity and bending moment in a single pile increased significantly with increase in pile length only up to an optimum embedment depth in sand layer which was found to be equal to three times pile diameter and 0.21 times pile length for pile with L/D 15. Scale effect on lateral capacity has also been studied and discussed. Doi: 10.28991/cej-2021-03091686 Full Text: PDF


2002 ◽  
Vol 42 (1) ◽  
pp. 17-33 ◽  
Author(s):  
AKIRA YAMAGUCHI ◽  
MOTOKI KAZAMA ◽  
HIROFUMI TOYOTA ◽  
MASAKI KITAZUME ◽  
TAKAHIRO SUGANO

2015 ◽  
Vol 773-774 ◽  
pp. 1502-1507
Author(s):  
Saiful Azhar Ahmad Tajudin ◽  
Mohd Fairus Yusof ◽  
I. Bakar ◽  
Aminaton Marto ◽  
Muhammad Nizam Zakaria ◽  
...  

Construction, buildings and infrastructure founded on soft clays are often affected by settlement problem. Therefore, Prefabricated Vertical Drain (PVD) is one of the best solutions to accelerate soil consolidation by shortening the drainage path. In this study, numerical investigation was carried out to pursue a better understanding of the consolidation behavior of soft clay improved with PVD. The consolidation process accelerated by PVD with surcharge of 50 kPa was analysed using the ABAQUS software by adopting an elastic model. The aim of this study is to compare the settlement and the required time to fully consolidate the soft soil at different drain spacings (1.0 m, 1.5 m and 2.0 m) for two different thickness of the clay layer. The results shows that the time required to completely consolidate the soft soil for 12 m and 20 m thickness of clay layer with different spacings are in the range of 3 months to 66 months. The settlement rate and excess pore water pressure dissipation are increased when the spacing of the drain closer.


Sign in / Sign up

Export Citation Format

Share Document