Aero-elastic Analysis of High Aspect Ratio UAV Wing—Based on Two-Way Fluid Structure Interaction

Author(s):  
Vidit Sharma ◽  
S. Keshava Kumar
2009 ◽  
Vol 23 (03) ◽  
pp. 445-448
Author(s):  
KYUNG-SEOK KIM ◽  
IN-GYU LIM ◽  
IN LEE ◽  
JAE-HAN YOO

In this research, fluid-structure interaction problem including geometric structural nonlinearity is studied for a high-aspect-ratio wing. When a high-aspect-ratio wing structure is interacted with external airload, geometric structural nonlinearity can be caused by large deflection of a wing. For the investigation of such a fluid-structure interaction problem, the transonic small disturbance theory for the aerodynamic analysis and the large deflection beam theory for the structural analysis are used, respectively. For the coupling between fluid and structure, the transformation of a displacement from the structural mesh to the aerodynamic grid is performed by a shape function which is used for the finite element and the inverse transformation of force by work equivalent load method. Static deformations in the vertical and twist deflections caused by gravity loading are compared with experimental results. Also, static aeroelastic analysis results are compared with experimental data. From the analysis results, effects of structural nonlinearity on static aeroelastic characteristics are investigated.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mustafa Serdar Genç ◽  
Hacımurat Demir ◽  
Mustafa Özden ◽  
Tuna Murat Bodur

Purpose The purpose of this exhaustive experimental study is to investigate the fluid-structure interaction in the flexible membrane wings over a range of angles of attack for various Reynolds numbers. Design/methodology/approach In this paper, an experimental study on fluid-structure interaction of flexible membrane wings was presented at Reynolds numbers of 2.5 × 104, 5 × 104 and 7.5 × 104. In the experimental studies, flow visualization, velocity and deformation measurements for flexible membrane wings were performed by the smoke-wire technique, multichannel constant temperature anemometer and digital image correlation system, respectively. All experimental results were combined and fluid-structure interaction was discussed. Findings In the flexible wings with the higher aspect ratio, higher vibration modes were noticed because the leading-edge separation was dominant at lower angles of attack. As both Reynolds number and the aspect ratio increased, the maximum membrane deformations increased and the vibrations became visible, secondary vibration modes were observed with growing the leading-edge vortices at moderate angles of attack. Moreover, in the graphs of the spectral analysis of the membrane displacement and the velocity; the dominant frequencies coincided because of the interaction of the flow over the wings and the membrane deformations. Originality/value Unlike available literature, obtained results were presented comparatively using the sketches of the smoke-wire photographs with deformation measurement or turbulence statistics from the velocity measurements. In this study, fluid-structure interaction and leading-edge vortices of membrane wings were investigated in detail with increasing both Reynolds number and the aspect ratio.


2017 ◽  
Vol 10 (6) ◽  
pp. 1799-1811 ◽  
Author(s):  
M. H. H. Ishak ◽  
M. Z. Abdullah ◽  
M. S. Abdul Aziz ◽  
A. Abas ◽  
W. K. Loh ◽  
...  

2014 ◽  
Author(s):  
Abdul Aziz Mohd. Yusof ◽  
◽  
Ardiyansyah Syahrom ◽  
M. N. Harun ◽  
A. H. Omar

Sign in / Sign up

Export Citation Format

Share Document