An M/M/1 Queueing Model Subject to Differentiated Working Vacation and Customer Impatience

Author(s):  
K. V. Vijayashree ◽  
K. Ambika
2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Kolinjivadi Viswanathan Vijayashree ◽  
Atlimuthu Anjuka

This paper deals with the stationary analysis of a fluid queue driven by anM/M/1queueing model subject to Bernoulli-Schedule-Controlled Vacation and Vacation Interruption. The model under consideration can be viewed as a quasi-birth and death process. The governing system of differential difference equations is solved using matrix-geometric method in the Laplacian domain. The resulting solutions are then inverted to obtain an explicit expression for the joint steady state probabilities of the content of the buffer and the state of the background queueing model. Numerical illustrations are added to depict the convergence of the stationary buffer content distribution to one subject to suitable stability conditions.


2016 ◽  
Vol 8 (5) ◽  
pp. 56 ◽  
Author(s):  
Ehmet Kasim

By using the strong continuous semigroup theory of linear operators we prove that the M/G/1 queueing model with working vacation and vacation interruption has a unique positive time dependent solution which satisfies probability conditions. When the both service completion rate in a working vacation period and in a regular busy period are constant, by investigating the spectral properties of an operator corresponding to the model we obtain that the time-dependent solution of the model strongly converges to its steady-state solution.


2021 ◽  
Vol 13 (3) ◽  
pp. 833-844
Author(s):  
P. Gupta ◽  
N. Kumar

In this present paper, an M/M/1 retrial queueing model with a waiting server subject to breakdown and repair under working vacation, vacation interruption is considered. Customers are served at a slow rate during the working vacation period, and the server may undergo breakdowns from a normal busy state. The customer has to wait in orbit for the service until the server gets repaired. Steady-state solutions are obtained using the probability generating function technique. Probabilities of different server states and some other performance measures of the system are developed.  The variation in mean orbit size, availability of the server, and server state probabilities are plotted for different values of breakdown parameter and repair rate with the help of MATLAB software. Finally, cost optimization of the system is also discussed, and the optimal value of the slow service rate for the model is obtained.


2021 ◽  
Vol 1849 (1) ◽  
pp. 012021
Author(s):  
Praveen Kumar Agrawal ◽  
Anamika Jain ◽  
Madhu Jain

2018 ◽  
Vol 16 (1) ◽  
pp. 767-791 ◽  
Author(s):  
Ehmet Kasim ◽  
Geni Gupur

AbstractIn this paper, we study the asymptotic property of underlying operator corresponding to the M/G/1 queueing model with single working vacation, where both service times in a regular busy period and in a working vacation period are function. We obtain that all points on the imaginary axis except zero belong to the resolvent set of the operator and zero is an eigenvalue of both the operator and its adjoint operator with geometric multiplicity one. Therefore, we deduce that the time-dependent solution of the queueing model strongly converges to its steady-state solution. We also study the asymptotic behavior of the time-dependent queueing system’s indices for the model.


Sign in / Sign up

Export Citation Format

Share Document