Null-Space Based Optimal Control Allocation for Spacecraft Attitude Stabilization

Author(s):  
Qinglei Hu ◽  
Bo Li ◽  
Bing Xiao ◽  
Youmin Zhang
2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Aihua Zhang ◽  
Yongchao Wang ◽  
Zhiqiang Zhang ◽  
Hamid Reza Karimi

A robust control allocation scheme is developed for rigid spacecraft attitude stabilization in the presence of actuator partial loss fault, actuator failure, and actuator misalignment. First, a neural network fault detection scheme is proposed, Second, an adaptive attitude tracking strategy is employed which can realize fault tolerance control under the actuator partial loss and actuator failure withinλmin⁡=0.5. The attitude tracking and faults detection are always here during the procedure. Once the fault occurred which could not guaranteed the attitude stable for 30 s, the robust control allocation strategy is generated automatically. The robust control allocation compensates the control effectiveness uncertainty which caused the actuator misalignment. The unknown disturbances, uncertain inertia matrix, and even actuator error with limited actuators are all considered in the controller design process. All are achieved with inexpensive online computations. Numerical results are also presented that not only highlight the closed-loop performance benefits of the control law derived here but also illustrate its great robustness.


Author(s):  
Susan Frost ◽  
Brian Taylor ◽  
Christine Jutte ◽  
John Burken ◽  
Khanh Trinh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document