Congestion Management of System with N-1 Contingency by Optimal Placement of TCSC Using PSO

Author(s):  
Ashish Singh ◽  
Aashish Kumar Bohre
Author(s):  
Naraina Avudayappan ◽  
S.N. Deepa

Purpose The loading and power variations in the power system, especially for the peak hours have abundant concussion on the loading patterns of the open access transmission system. During such unconditional state of loading the transmission line parameters and the line voltages show a substandard profile, which depicts exaction of congestion management of the power line in such events. The purpose of this paper is to present an uncomplicated and economical model for congestion management using flexible AC transmission system (FACTS) devices. Design/methodology/approach The approach desires a two-step procedure, first by optimal placement of thyristor controlled series capacitor (TCSC) and static VAR compensator (SVC) as FACTS devices in the network; second tuning the control parameters to their optimized values. The optimal location and tuning of TCSC and SVC represents a hectic optimization problem, due to its multi-objective and constrained nature. Hence, a reassuring heuristic optimization algorithm inspired by behavior of cat and firefly is employed to find the optimal placement and tuning of TCSC and SVC. Findings The effectiveness of the proposed model is tested through simulation on standard IEEE 14-bus system. The proposed approach proves to be better than the earlier existing approaches in the literature. Research limitations/implications With the completed simulation and results, it is proved that the proposed scheme has reduced the congestion in line, thereby increasing the voltage stability along with improved loading capability for the congested lines. Practical implications The usefulness of the proposed scheme is justified with the computed results, giving convenience for implementation to any practical transmission network. Originality/value This paper fulfills an identified need to study exaction of congestion management of the power line.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2601
Author(s):  
Mohammad Reza Salehizadeh ◽  
Mahdi Amidi Koohbijari ◽  
Hassan Nouri ◽  
Akın Taşcıkaraoğlu ◽  
Ozan Erdinç ◽  
...  

Exposure to extreme weather conditions increases power systems’ vulnerability in front of high impact, low probability contingency occurrence. In the post-restructuring years, due to the increasing demand for energy, competition between electricity market players and increasing penetration of renewable resources, the provision of effective resiliency-based approaches has received more attention. In this paper, as the major contribution to current literature, a novel approach is proposed for resiliency improvement in a way that enables power system planners to manage several resilience metrics efficiently in a bi-objective optimization planning model simultaneously. For demonstration purposes, the proposed method is applied for optimal placement of the thyristor controlled series compensator (TCSC). Improvement of all considered resilience metrics regardless of their amount in a multi-criteria decision-making framework is novel in comparison to the other previous TCSC placement approaches. Without loss of generality, the developed resiliency improvement approach is applicable in any power system planning and operation problem. The simulation results on IEEE 30-bus and 118-bus test systems confirm the practicality and effectiveness of the developed approach. Simulation results show that by considering resilience metrics, the performance index, importance of curtailed consumers, congestion management cost, number of curtailed consumers, and amount of load loss are improved by 0.63%, 43.52%, 65.19%, 85.93%, and 85.94%, respectively.


Sign in / Sign up

Export Citation Format

Share Document