Mitigating PV Penetration Effect on Primary Frequency Control and State-of-Charge Recovery by utilizing ANFIS Controller

Author(s):  
H. Jagadeesh ◽  
Kurakula Vimala Kuamr
Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 549 ◽  
Author(s):  
Sheeraz Iqbal ◽  
Ai Xin ◽  
Mishkat Ullah Jan ◽  
Salman Salman ◽  
Atta ul Munim Zaki ◽  
...  

Electric vehicles (EVs) have been receiving greater attention as a tool for frequency control due to their fast regulation capability. The proliferation of EVs for primary frequency regulation is hampered by the need to simultaneously maintain industrial microgrids dispatch and EV state of charge levels. The current research aims to examine the operative and dominating role of the charging station operator, along with a vehicle to grid strategy; where, indeterminate tasks are executed in the microgrid without the EVs charging/discharging statistics. The role of the charging station operator in regulation is the assignment of the job inside the primary frequency control capacity of electric vehicles. Real-time rectification of programmed vehicle to grid (V2G) power ensures electric vehicles’ state of charge at the desired levels. The proposed V2G strategy for primary frequency control is validated through the application of a two-area interconnected industrial micro-grid and another microgrids with renewable resources. Regulation specifications are communicated to electric vehicles and charging station operators through an electric vehicle aggregator in the proposed strategy. At the charging station operator, V2G power at the present time is utilized for frequency regulation capacity calculation. Subsequently, the V2G power is dispatched in light of the charging demand and the frequency regulation. Furthermore, V2G control strategies for distribution of regulation requirement to individual EVs are also developed. In summary, the article presents a novel primary frequency control through V2G strategy in an industrial microgrid, involving effective coordination of the charging station operator, EV aggregator, and EV operator.


Author(s):  
R. Z. Aminov ◽  
A. N. Bayramov ◽  
M. V. Garievskii

The paper gives the analysis of the problem of the primary current frequency regulation in the power system, as well as the basic requirements for NPP power units under the conditions of involvement in the primary regulation. According to these requirements, the operation of NPPs is associated with unloading and a corresponding decrease in efficiency. In this regard, the combination of nuclear power plants with a hydrogen complex is shown to eliminate the inefficient discharge mode which allows the steam turbine equipment and equipment of the reactor facility to operate in the basic mode at the nominal power level. In addition, conditions are created for the generation and accumulation of hydrogen and oxygen during the day, as well as additionally during the nighttime failure of the electrical load which allows them to be used to generate peak power.  The purpose of the article is to assess the systemic economic effect as a result of the participation of nuclear power plants in combination with the hydrogen complex in the primary control of the current frequency in the power sys-tem, taking into account the resource costs of the main equipment. In this regard, the paper gives the justification of cyclic loading of the main equipment of the hydrogen complex: metal storage tanks of hydrogen and oxygen, compressor units, hydrogen-oxygen combustion chamber of vapor-hydrogen overheating of the working fluid in the steam turbine cycle of a nuclear power plant. The methodological foundations for evaluating the working life of equipment under cyclic loading with the participation in the primary frequency control by the criterion of the growth rate of a fatigue crack are described. For the equipment of the hydrogen complex, the highest intensity of loading is shown to occur in the hydrogen-oxygen combustion chamber due to high thermal stresses.  The system economic effect is estimated and the effect of wear of the main equipment under cyclic loading is shown. Under the conditions of combining NPP power units with a hydrogen complex, the efficiency of primary reg-ulation is shown to depend significantly on: the cost of equipment subjected to cyclic loading; frequency and intensity of cyclic loading; the ratio of the tariff for peak electricity, and the cost of electricity of nuclear power plants.  Based on the developed methodology for assessing the effectiveness of the participation of nuclear power plants with a hydrogen complex in the primary frequency control, taking into account the damage to the equipment, the use of the hydrogen complex is shown to provide a tangible economic effect compared with the option of unloading nuclear power plants with direct participation in frequency control.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1379
Author(s):  
Md Ruhul Amin ◽  
Michael Negnevitsky ◽  
Evan Franklin ◽  
Kazi Saiful Alam ◽  
Seyed Behzad Naderi

In power systems, high renewable energy penetration generally results in conventional synchronous generators being displaced. Hence, the power system inertia reduces, thus causing a larger frequency deviation when an imbalance between load and generation occurs, and thus potential system instability. The problem associated with this increase in the system’s dynamic response can be addressed by various means, for example, flywheels, supercapacitors, and battery energy storage systems (BESSs). This paper investigates the application of BESSs for primary frequency control in power systems with very high penetration of renewable energy, and consequently, low levels of synchronous generation. By re-creating a major Australian power system separation event and then subsequently simulating the event under low inertia conditions but with BESSs providing frequency support, it has been demonstrated that a droop-controlled BESS can greatly improve frequency response, producing both faster reaction and smaller frequency deviation. Furthermore, it is shown via detailed investigation how factors such as available battery capacity and droop coefficient impact the system frequency response characteristics, providing guidance on how best to mitigate the impact of future synchronous generator retirements. It is intended that this analysis could be beneficial in determining the optimal BESS capacity and droop value to manage the potential frequency stability risks for a future power system with high renewable energy penetrations.


2016 ◽  
Vol 88 ◽  
pp. 985-990 ◽  
Author(s):  
Fei Teng ◽  
Yunfei Mu ◽  
Hongjie Jia ◽  
Jianzhong Wu ◽  
Pingliang Zeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document