qualification test
Recently Published Documents


TOTAL DOCUMENTS

297
(FIVE YEARS 31)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Vijay Kumar Keerthivasan ◽  
Dustin Young ◽  
Cathrine Mehus ◽  
Bjornar Gjedrem ◽  
Moetaz Abdelghany ◽  
...  

Abstract To access a larger amount of pay zone, well trajectories are becoming longer and more complex, creating greater challenges for running completion liners. A liner shoe is a casing accessory tool that aids in the running of completion liners in long wells by allowing auto-filling of the liner and enabling pumping through the bottom of the liner. Upon reaching planned liner depth, the liner shoe is closed to allow for pressure testing and subsequent completion operations. Conventional methods used to close a liner shoe involve well intervention to set plugs or by dropping a ball, and there are inherent costs and risks associated with these operations. This paper presents the development and deployment of a remotely activated electronic liner shoe (ELS) for offshore applications that enables interventionless closing of the liner shoe, thereby improving operational efficiency, and reducing potential operational issues that could occur while closing the liner shoe conventionally. The ELS allows the operator to precisely control when the liner shoe closes – either based on pre-programmed pressure signals, a timer, or a combination of the two. A major operator in the Middle East required an ELS to be developed and qualified specifically for their offshore well conditions. A new technology qualification program was devised in collaboration with the operator to qualify both the electronic and mechanical functionalities of the tool. This paper documents the methods and results of the extensive qualification test program. The development and qualification process were successfully completed within 10 months at research and development facilities in Norway. Following qualification testing, the ELS was first deployed for the operator in an offshore well in Q4 of 2019. Operational considerations in programming the remote functionality of the tool is presented in this paper. After a successful field trial, the ELS has been run in more than 15 offshore wells and has become the standard option in the operator's completion program.


2021 ◽  
Vol 79 (12) ◽  
pp. 1138-1149
Author(s):  
Stephen Sundarraj

Within PAUT, inspectors have the option to apply various scanning techniques for performing weld inspections according to their configurations. These include the sectorial scan (S-scan) or a fixed-angle electronic scan (E-scan), or a combination of both called a compound S-scan. Compound S-scan, introduced around 2015 (Magruder 2016), has not been much explored, as not enough data can be extracted from the available resources to determine its effectiveness for inspection. Therefore, the author has taken a specific interest in studying this technique by comparing the available PAUT scanning techniques and providing options for selecting the most appropriate scanning techniques for the intended applications. For this purpose, a 25 mm thick welder qualification test plate with natural defects (verified by RT) was studied.


2021 ◽  
Vol 41 ◽  
pp. 75-84
Author(s):  
Adrijana Savić ◽  
Robert J. Peterman ◽  
B. Terry Beck

Prestressed concrete ties could develop end-splitting cracks along tendons due to lateral bursting stresses. The lateral bursting stresses can form due to Hoyer effect (change in diameter of the prestressing tendons due to Poisson’s ratio), the jacking force in the tendons, geometrical features and indent characteristics of the prestressing tendons. End-splitting cracks can occur immediately after de-tensioning procedure in some cases, but they also can be developed during the first weeks after de-tensioning procedure due to sustained lateral stresses exerted by the prestressing tendons. The ability of concrete to resist these bursting stresses without cracking is primarily the function of the thickness of concrete cover, the type of concrete mixture used and the maximum compressive strength of the concrete. Qualification test will be great tool for prestressed concrete tie manufacturers to identify tie designs that may be susceptible to end-splitting cracks. This test was formally adopted as section 4.2.4 in Chapter 30 of the 2021 AREMA Manual for Railway Engineering.


Author(s):  
Martina Orefice ◽  
Vincenzo Quaranta ◽  
Giovanni Bruno ◽  
Giuseppe Martinotti ◽  
Carmine Carandente Tartaglia

Author(s):  
Pavle Šćepanović ◽  
Frederik A. Döring

AbstractFor a broad range of applications, flight mechanics simulator models have to accurately predict the aircraft dynamics. However, the development and improvement of such models is a difficult and time consuming process. This is especially true for helicopters. In this paper, two rapidly applicable and implementable methods to derive linear input filters that improve the simulator model are presented. The first method is based on model inversion, the second on feedback control. Both methods are evaluated in the time domain, compared to recorded helicopter flight test data, and assessed based on root mean square errors and the Qualification Test Guide bounds. The best results were achieved when using the first method.


2021 ◽  
Author(s):  
Mohd Nazri Md Noor ◽  
Javier Abreu ◽  
Alexandr Demyanov ◽  
Nabil Batita

Abstract A new valve has been designed and qualified to reduce interventions during packer-setting operations. In a typical well, completion with a hydraulic-production packer, the tubing string must be plugged to create the required pressure differential for packer actuation. At desired depth, delivering a preselected circulation rate actuates the tool and converts the string to a closed system, enabling the packer to be set hydraulically. Before designing the valve, an operator's engineering and operational requirements were collected and understood. Then a conceptual design was evaluated, and a prototype device was manufactured. The valve was tested for autofill capability, actuation parameters and pressure integrity. The critical design elements of the valve are the choking and spring mechanisms, which enable circulation without prematurely actuating the valve and then enable tubing autofill. A visual inspection post qualification test was conducted to validate the components’ condition and integrity. During the qualification process, the valve working envelope was developed. After the successful qualification test, the valve was deployed in a customer well with a production packer that has a blanking device consisting of a ceramic disc. Prior to deployment, hydraulic simulation was done to determine the required flow rate to achieve desired pressure drop across the valve for actuation. During deployment, the tubing was filled automatically, validating the valve autofill capability. Upon reaching setting depth, the completion string was circulated at the required circulation rate to actuate the valve and close the system. Pressure integrity in the tubing validated the valve functionality. Surface pressure was applied against the blanking device, and the production packer was set hydraulically. Subsequently, before completing the well, the blanking device was broken using a slickline run, and the well was put on production. The deployment technique using the valve requires only one slickline run whereby in typical operation four slickline runs are required. This project represented true problem-solving engineering approaches. The operator requirements were properly understood and conceptual design was validated, and product realization phase was initiated. The efficient product development methodology improves the lead time from conceptualization to product realization. During the first well deployment, hydraulic simulation during the prejob planning proved to be critical to understanding the required circulation rates to actuate the valve.


2021 ◽  
Vol 166 ◽  
pp. 112302
Author(s):  
Yiwei Lu ◽  
Yong Yang ◽  
Li Jiang ◽  
Ming Zhang ◽  
Rumeng Wang ◽  
...  

Author(s):  
Adrijana Savic ◽  
B. Terry Beck ◽  
Robert J. Peterman

Abstract Prestressed concrete ties could develop end-splitting cracks along tendons due to lateral bursting stresses. The lateral bursting stresses can form due to Hoyer effect (change in diameter of the prestressing tendons due to Poisson’s ratio, the jacking force in the tendons, geometrical features, and indent characteristics of the prestressing tendons. End-splitting cracks can occur immediately after de-tensioning procedure in some cases, but they also can be developed during the first weeks after de-tensioning procedure due to sustained lateral stresses exerted by the prestressing tendons. The ability of concrete to resist these bursting stresses without cracking is primarily the function of the thickness of concrete cover, the type of concrete mixture used and the maximum compressive strength of the concrete. The test purpose was to identify tie designs that may be susceptible to end-splitting cracks. The Qualification test will be great tool to identify tie designs that have ability to form end-splitting cracks. The System Qualification Test involves six pre-tensioned concrete prisms with the same prestressing tendons and concrete mixture that is used in the concrete ties, except that the edge distance for the prisms is reduced by approximately 25 percent. If this reduction in edge distance results in longitudinal splitting cracks along the prestressing tendons, then the system (tie design and material selection) may be susceptible to concrete end-splitting cracks. In this case, changes to the design and/or material selection should be made prior to mass production of ties.


Sign in / Sign up

Export Citation Format

Share Document