Non-destructive and Flexural Testing of Multilayer Bamboo Hollow-Core Reinforced Composite Bridges

Author(s):  
Nawir Rasidi ◽  
Taufiq Rochman ◽  
Eva Arifi ◽  
Evi Nur Cahya ◽  
Sri Wiwoho Mudjanarko
2021 ◽  
Author(s):  
◽  
Matthew Thomson

<p>This thesis focuses on the application of high frequency ultrasound as a tool for performing non-destructive testing for pultruded fibre reinforced composite (FRC) rods. These composite rods are popular in the manufacturing, construction and electrical industries due to their chemical, electrical and strength properties. Such FRCs are manufactured on automated production lines that operate day and night. Non-destructive testing techniques are desired to quickly and accurately detectmanufacturing flaws such as coating thickness irregularities and surface cracks. Layers and cracks can present as large changes in acoustic impedance and will strongly reflect ultrasonic waves. Combined with their low cost, east of use and absense of potentially harmful radiation, ultrasound has proven popular worldwide for Non-Destructive Testing. Finite Element Analysis (FEA) was employed to investigate the propagation of ultrasonic waves through layers of material to simulate a thickness measurement and the ability of ultrasound to measure thicknesses was proven. Experimental work was conducted on two fibre reinforced composite samples with varying thickness coatings of plastic and paint. The thickness was measured accurately using immersion transducers at 50MHz and a resolution of 20μm was attained through the use of matched filtering techniques. Surface acoustic waves, particularly Rayleigh waves were investigated using FEA techniques so that the generation, scattering and detection of such waves was understood. This lead to the development of methods for detecting surface cracks in glass using Rayleigh waves and these methods were successfully used in experimental work. Wave propagation in fibre reinforced composites was modelled and experimentally investigated with the results confirming theoretical expectations. Finally a Rayleigh wave was launched onto a fibre reinforced composite sample however the amount of energy leakage into the water was so great, due to the acoustic impedance of water, the detection of the wave was prevented. The conclusion reached was that an immersion setup was not appropriate for launching a travelling Rayleigh wave.</p>


Author(s):  
A. K. Dash ◽  
D. K. Agarwalla ◽  
H. C. Das ◽  
M. K. Pradhan ◽  
S. K. Bhuyan

Machines and beam like structures used in various industries require continuous monitoring for the fault identification for ensuring uninterrupted service. Different non-destructive techniques (NDT) are generally used for this purpose, but they are costly and time consuming. Vibration based methods can be useful to detect cracks in structures using various artificial intelligence (AI) techniques. The modal parameters from the dynamic response of the structure are used for the purpose. In the current analysis, the vibration characteristics of a glass fiber reinforced composite cracked cantilever beam having different crack locations and depths have been studied. Numerical and finite element methods have been used to extract the diagnostic indices (natural frequencies, mode shapes) from cracked and intact beam structure. An intelligent Genetic Algorithm (GA) based controller has been designed to automate the fault identification and location process. Single point crossover and in some cases mutation procedure have been followed to find out the optimal solution from the search space. The controller has been trained in offline mode using the simulation and experimental results (initial data pool) under various healthy and faulty conditions of the structure. The outcome from the developed controller shows that the system could not only detect the cracks but also predict their locations and severities. Good agreement between the simulation, experimental and GA controller results confirms the effectiveness of the proposed controller.


2009 ◽  
Vol 22 (9) ◽  
pp. 095001 ◽  
Author(s):  
C Bonavolontà ◽  
M Valentino ◽  
C Meola ◽  
G M Carlomagno ◽  
R Volponi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document