Effect of Profile Geometry and Cutting Speed Override Parameter on Profiling Speed During Tapering Using Wire Electric Discharge Machining

Author(s):  
I. V. Manoj ◽  
S. Narendranath
2021 ◽  
Vol 1026 ◽  
pp. 28-38
Author(s):  
I. Vishal Manoj ◽  
S. Narendranath ◽  
Alokesh Pramanik

Wire electric discharge machining non-contact machining process based on spark erosion technique. It can machine difficult-to-cut materials with excellent precision. In this paper Alloy-X, a nickel-based superalloy was machined at different machining parameters. Input parameters like pulse on time, pulse off time, servo voltage and wire feed were employed for the machining. Response parameters like cutting speed and surface roughness were analyzed from the L25 orthogonal experiments. It was noted that the pulse on time and servo voltage were the most influential parameters. Both cutting speed and surface roughness increased on increase in pulse on time and decrease in servo voltage. Grey relation analysis was performed to get the optimal parametric setting. Response surface method and artificial neural network predictors were used in the prediction of cutting speed and surface roughness. It was found that among the two predictors artificial neural network was accurate than response surface method.


Author(s):  
IV Manoj ◽  
S Narendranath

In the present research work, an in-house developed fixture is used to achieve taper profiles which avoids the disadvantages in convention tapering operation in wire electric discharge machining like wire bend, inaccuracies in taper, insufficient flushing, guide wear etc. A simple triangular profile was machined at 0°, 15° and 30° slant/taper angles. These taper profile areas are investigated for various machining parameters like wire guide distance, corner dwell time, wire offset and cutting speed override. It is observed that as the wire guide distance and cutting speed override increases, the profile area decreases. Whereas in case of wire offset, as offset increases the profile areas also increase. The corner dwell time parameter do not effect on the profile area. The taper profile areas measured highest at 30° followed by 15° and 0° slant angles. This is due to the workpiece placed at different angles during machining with the aid of fixture to obtain taper profile. The taper angle represents the angularity of slant triangular profiles. As the slant angle increases the variation in taper error also increases due to higher wire vibration. An artificial neural network model is developed for the prediction of these areas at a different slant angle. The model is validated experimentally where the errors in prediction ranged from 1% to 9%. In conclusion, it can be noticed that the machining parameters and slant angle influence on profiles irrespective of their dimensions.


2018 ◽  
Vol 96 (1-4) ◽  
pp. 1429-1443 ◽  
Author(s):  
Kashif Ishfaq ◽  
Nadeem Ahmad Mufti ◽  
Mohammad Pervez Mughal ◽  
Muhammad Qaiser Saleem ◽  
Naveed Ahmed

2012 ◽  
Vol 717-720 ◽  
pp. 861-864 ◽  
Author(s):  
Hideki Yamada ◽  
Satarou Yamaguchi ◽  
Norimasa Yamamoto ◽  
Tomohisa Kato

A new method based on electric discharge machining (EDM) was developed for cutting a silicon carbide (SiC) ingot. The EDM method is a very useful technique to cut hard materials like SiC. By cutting with the EDM method, kerf loss and roughness of sample are generally smaller than those obtained by cutting with a diamond saw. Moreover, the warpage is smaller than that by the diamond saw cutting, and the cutting speed can be 10 times faster than that of the diamond saw at the present time. We used wires of 50 mm and 100 mm diameters in the experiments, and the experimental results of the cutting speed and the kerf losses are presented. The kerf loss of the 50 mm wire is less than 100 mm, and the cutting speed is about 0.8 mm/min for the thickness of a 6 mm SiC ingot. If we can maintain the cutting speed, the slicing time of a 2 inches diameter ingot would be about seven hours.


2014 ◽  
Vol 778-780 ◽  
pp. 776-779 ◽  
Author(s):  
Masumi Ogawa ◽  
Kei Mine ◽  
Seiki Fuchiyama ◽  
Yasuhiro Tawa ◽  
Tomohisa Kato

In order to slice the larger size ingot toward 6 inch of silicon carbide (SiC), we are developing Multi-wire Electric Discharge Machining (EDM). To prevent wire break during slicing, we have developed the electric discharge pulse control system. So far, with 10 multi-wires, we have succeeded in slicing of 4 inch SiC balk single crystal without wire break. High quality slicing surface (e.g. small value of around 10 μm of SORI for 3 inchi wafer) was also achieved. By polishing methode, EDM-sliced wafer was estimated to have the uniform thickness of damaged layer over the entire surface. We confirmed that the wafer sliced by EDM can be processed in the later process, by grinding the 3 inch wafer. And it was confirmed that 6 inch ingot can be sliced with 10 multi-wire EDM, by slicing the boule of SiC poly crystal. For the larger diameter ingot than 4 inch, Multi-wire EDM will be practically used by the effective removal of machining chips from the machining clearance between the wire and work.


Sign in / Sign up

Export Citation Format

Share Document