Cutting Speed of Electric Discharge Machining for SiC Ingot

2012 ◽  
Vol 717-720 ◽  
pp. 861-864 ◽  
Author(s):  
Hideki Yamada ◽  
Satarou Yamaguchi ◽  
Norimasa Yamamoto ◽  
Tomohisa Kato

A new method based on electric discharge machining (EDM) was developed for cutting a silicon carbide (SiC) ingot. The EDM method is a very useful technique to cut hard materials like SiC. By cutting with the EDM method, kerf loss and roughness of sample are generally smaller than those obtained by cutting with a diamond saw. Moreover, the warpage is smaller than that by the diamond saw cutting, and the cutting speed can be 10 times faster than that of the diamond saw at the present time. We used wires of 50 mm and 100 mm diameters in the experiments, and the experimental results of the cutting speed and the kerf losses are presented. The kerf loss of the 50 mm wire is less than 100 mm, and the cutting speed is about 0.8 mm/min for the thickness of a 6 mm SiC ingot. If we can maintain the cutting speed, the slicing time of a 2 inches diameter ingot would be about seven hours.

2009 ◽  
Vol 615-617 ◽  
pp. 609-612 ◽  
Author(s):  
Tatsunori Sugimoto ◽  
Toshiya Noro ◽  
Satarou Yamaguchi ◽  
Hideyoshi Majima ◽  
Tomohisa Kato

Diamond saw is generally used to make the silicon carbide (SiC) wafers from ingots, but it takes long time for cutting. We have used the electric discharge machining (EDM) to cut SiC. The cutting speed of EDM for SiC is almost 10 times faster than the diamond saw, and the surface roughness is 1/10 for the diamond saw. EDM cut SiC by the plasma produced between the wire and SiC material. The emissions from EDM plasma may involve much information for EDM cutting. We monitored the total light intensity by a photodiode, and observed the spectrum of the emission from EDM plasma by a visible spectroscopy. The discharge gas used helium and argon. In both discharges, the light emission was observed when the current was not zero. Also, many lines were observed Si I, Si II and C I from the SiC sample, and Cu I and Zn I from the wire. And, the electron temperature of EDM plasma was estimated to be under several eV because the observed lines were almost the emission from atoms. Also, the scars, which show the copper-alloy wire was hurt by discharge, were observed from the wire.


2010 ◽  
Vol 645-648 ◽  
pp. 869-872 ◽  
Author(s):  
Tatsunori Sugimoto ◽  
Toshiya Noro ◽  
Satarou Yamaguchi ◽  
Hideyoshi Majima ◽  
Tomohisa Kato

We report on the discharge gas of the electric discharge machining (EDM) for silicon carbide (SiC) single crystal. We investigated the cutting speed and the kerf loss of EDM for SiC by using three kinds discharge gases: Ar, Ar+CH4(10%) and Ar+CF4(10%). The maximum cutting speed of EDM in Ar, Ar+CH4(10%) and Ar+CF4(10%) was 0.02mm/min, 0.04 mm/min and 0.06 mm/min, respectively. The kerf loss of EDM in Ar, Ar+CH4(10%) and Ar+CF4(10%) was 490m, 430m and 470m, respectively. It is shown that cutting with a smooth edge and low kerf loss is faster by mixing CH4 or CF4 in Ar.


2008 ◽  
Vol 600-603 ◽  
pp. 851-854 ◽  
Author(s):  
Satarou Yamaguchi ◽  
Toshiya Noro ◽  
Hideaki Takahashi ◽  
Hideyoshi Majima ◽  
Yoshihisa Nagao ◽  
...  

In order to cut the ingots and slabs of the silicon carbide (SiC), we developed the new method of electric discharge machining (EDM). EDM is usually used for the machining of the metals, and if it is electric conductive material, it is effective for the machining. However, if the electrical resistivity of SiC is high, the electric current cannot be large enough for and the EDM, and we failed the machining of SiC. Therefore, we use three methods to keep higher electric conduction. One is photoconductive, the second is high electric field effect and it is called avalanche effect, and the third is high temperature effect because usually the resistivity is low when the semiconductor or insulation materials are in high temperature. Thus, we applied three method, and finally can cut the SiC slabs of the resistivity of the order of 10 Ωm, which is almost 1000 times higher than that of the ordinary EDM at least. The flatness of the cutting surface is the same of the metals’ and the cutting rate for the SiC ingots is 10 times higher than that of diamond saw. This technique will be effective for the related materials of SiC, such as diamonds and GaN.


2021 ◽  
Vol 1026 ◽  
pp. 28-38
Author(s):  
I. Vishal Manoj ◽  
S. Narendranath ◽  
Alokesh Pramanik

Wire electric discharge machining non-contact machining process based on spark erosion technique. It can machine difficult-to-cut materials with excellent precision. In this paper Alloy-X, a nickel-based superalloy was machined at different machining parameters. Input parameters like pulse on time, pulse off time, servo voltage and wire feed were employed for the machining. Response parameters like cutting speed and surface roughness were analyzed from the L25 orthogonal experiments. It was noted that the pulse on time and servo voltage were the most influential parameters. Both cutting speed and surface roughness increased on increase in pulse on time and decrease in servo voltage. Grey relation analysis was performed to get the optimal parametric setting. Response surface method and artificial neural network predictors were used in the prediction of cutting speed and surface roughness. It was found that among the two predictors artificial neural network was accurate than response surface method.


2014 ◽  
Vol 778-780 ◽  
pp. 776-779 ◽  
Author(s):  
Masumi Ogawa ◽  
Kei Mine ◽  
Seiki Fuchiyama ◽  
Yasuhiro Tawa ◽  
Tomohisa Kato

In order to slice the larger size ingot toward 6 inch of silicon carbide (SiC), we are developing Multi-wire Electric Discharge Machining (EDM). To prevent wire break during slicing, we have developed the electric discharge pulse control system. So far, with 10 multi-wires, we have succeeded in slicing of 4 inch SiC balk single crystal without wire break. High quality slicing surface (e.g. small value of around 10 μm of SORI for 3 inchi wafer) was also achieved. By polishing methode, EDM-sliced wafer was estimated to have the uniform thickness of damaged layer over the entire surface. We confirmed that the wafer sliced by EDM can be processed in the later process, by grinding the 3 inch wafer. And it was confirmed that 6 inch ingot can be sliced with 10 multi-wire EDM, by slicing the boule of SiC poly crystal. For the larger diameter ingot than 4 inch, Multi-wire EDM will be practically used by the effective removal of machining chips from the machining clearance between the wire and work.


2014 ◽  
Vol 778-780 ◽  
pp. 767-770 ◽  
Author(s):  
Norimasa Yamamoto ◽  
Satarou Yamaguchi ◽  
Tomohisa Kato

Recently, ingots of silicon carbide have been adapted to be sliced by the wire-cut electrical discharge machining. Fast slicing, and the reduction in the loss are important for slicing of the wafer. In this paper, characteristic features of the electric discharge machining in the ion-exchange water and the fluorine-based fluid were compared for these improvement. The discharge was caused by a pulse voltage applied to a ingot of silicon carbide and the wire in machining fluid, and the slicing was proceeded. As a result, improvement of surface roughness and kerf loss was confirmed, for the first time. In addition, the improving methods for fast slicing were considered.


2011 ◽  
Vol 189-193 ◽  
pp. 3153-3157
Author(s):  
Yan Zhen Zhang ◽  
Yong Hong Liu ◽  
Ren Jie Ji ◽  
Bao Ping Cai

In this paper, the EDM performance of water-in-oil (W/O) emulsions dielectric with different surfactant concentration is investigated by correlated to its physical properties, such as viscosity and droplets size, which is predominantly determined by the surfactant concentration. Experimental results show that the stability of the W/O emulsions increases with increasing surfactant concentration, whereas the EDM performance deteriorates with increasing surfactant concentration. So, taking a comprehensively consideration of the emulsion stability and EDM performance, the concentration of surfactant must be appropriately selected.


Electric discharge machining (EDM) is a non conventional machining method to fabricate very tough and hard materials. Although EDM has played a vital role in machining industry but with advancement of technology, alternative advanced methods of machining have been evolved such as near dry EDM (ND-EDM) and powder mixed near dry EDM (PMND-EDM). These technologies have been proven more efficient than traditional EDM in terms of machining performance characteristics such as higher material removal rate (MRR), better surface finish (Ra) and low tool wear rate (TWR) with high tolerance quality products. In this study an approach has been made to draw experimental comparison between ND-EDM and PMND-EDM in terms of MRR, SR and TWR. The experimental result and analysis revealed that PMND-EDM was better machining method than ND-EDM as in the former technique, the M RR increased by 45.04 % while SR and TWR reduced by 45.33 % and 60.60% respectively


Sign in / Sign up

Export Citation Format

Share Document