Introducing a Test Framework for Quality of Service Mechanisms in the Context of Software-Defined Networking

2021 ◽  
pp. 687-699
Author(s):  
Josiah Eleazar T. Regencia ◽  
William Emmanuel S. Yu
Author(s):  
Mujadad Ul Haq ◽  
Majid Ashraf ◽  
Sana ul Haq ◽  
Fazal Qudus Khan

The current internet architecture cannot manage the massive data volumes produced by the smart IoT-based healthcare systems. Very recently, the idea of Software-Defined Networking (SDN) has surfaced to resolve the issues related to networking. The incorporation of SDN technology in IoT-based healthcare systems can possibly solve the existing quality of service and data management issues. Furthermore, the IoT-based healthcare system can attain enhanced Quality of Service (QoS) through the employment of such schemes that use shortest-path routing algorithms and offer higher bandwidth to lesser delay paths as per the QoS requirements. In this study, the SDN technology is integrated with IoT-based healthcare systems, and the delay is reduced for delay-sensitive applications by using the Bellman-Ford algorithm. The proposed scheme is deployed using the POX controller and can effectively handle the existing QoS issues in the IoT healthcare systems. The simulation results of the proposed scheme show a clear drop in delay values in comparison to the benchmark scheme.


2019 ◽  
Vol 10 (2) ◽  
pp. 187 ◽  
Author(s):  
Madalena Pereira Da Silva ◽  
Mario Antonio Ribeiro Dantas ◽  
Felipe Volpato

2020 ◽  
Vol 17 (1) ◽  
pp. 27-31
Author(s):  
B. Naveen Chandar ◽  
N. Arivazhagan ◽  
K. Venkatesh

Quality of Service is considered as one of the important specifications in Software Defined Networking and we are focusing on Traffic Engineering which is capable of managing traffic characteristics like bandwidth for improving network performance. In this paper, performance evaluation of Quality of Service parameters such as Packet Delivery Ratio, Packet Delay and Packet Loss are performed with Network simulator 2 for all types of Software Defined Networking topologies. To do such evaluation on these parameters we use Traffic Engineering, which helps on improving the network performance, design mechanisms for routing to manage the traffic in network by improving the network resource usages and other major Quality of Service requisites. So in this proposed methodology, we use point-to-point topology related to traffic calculation which includes network parameters like general calculation of a framework, analyzing the traffic and future indication. Also the work process relevant to traffic management includes bandwidth of the traffic, scheduling of Quality of Service-assurance, saving power and management of traffic in Software Defined Networking. Existing technologies used for the above parameters are discussed below and our insights for future development on traffic engineering between the nodes in Software Defined Networking are offered.


Sign in / Sign up

Export Citation Format

Share Document