Real Network Traffic Data with PCAP in a Software-Defined Networking Test Framework for Quality of Service Mechanisms

2021 ◽  
pp. 153-161
Author(s):  
Justin Bryce Torres ◽  
Josiah Eleazar Regencia ◽  
William Emmanuel S. Yu
2016 ◽  
Vol 16 (1) ◽  
pp. 67
Author(s):  
Komang Kompyang Agus Subrata ◽  
I Made Oka Widyantara ◽  
Linawati Linawati

ABSTRACT—Network traffic internet is data communication in a network characterized by a set of statistical flow with the application of a structured pattern. Structured pattern in question is the information from the packet header data. Proper classification to an Internet traffic is very important to do, especially in terms of the design of the network architecture, network management and network security. The analysis of computer network traffic is one way to know the use of the computer network communication protocol, so it can be the basis for determining the priority of Quality of Service (QoS). QoS is the basis for giving priority to analyzing the network traffic data. In this study the classification of the data capture network traffic that though the use of K-Neaerest Neighbor algorithm (K-NN). Tools used to capture network traffic that wireshark application. From the observation of the dataset and the network traffic through the calculation process using K-NN algorithm obtained a result that the value generated by the K-NN classification has a very high level of accuracy. This is evidenced by the results of calculations which reached 99.14%, ie by calculating k = 3. Intisari—Trafik jaringan internet adalah lalu lintas ko­mu­nikasi data dalam jaringan yang ditandai dengan satu set ali­ran statistik dengan penerapan pola terstruktur. Pola ter­struktur yang dimaksud adalah informasi dari header paket data. Klasifikasi yang tepat terhadap sebuah trafik internet sa­ngat penting dilakukan terutama dalam hal disain perancangan arsitektur jaringan, manajemen jaringan dan keamanan jari­ngan. Analisa terhadap suatu trafik jaringan komputer meru­pakan salah satu cara mengetahui penggunaan protokol komu­nikasi jaringan komputer, sehingga dapat menjadi dasar pe­nen­tuan prioritas Quality of Service (QoS). Dasar pemberian prio­ritas QoS adalah dengan penganalisaan terhadap data trafik jaringan. Pada penelitian ini melakukan klasifikasi ter­hadap data capture trafik jaringan yang di olah menggunakan Algoritma K-Neaerest Neighbor (K-NN). Apli­kasi yang digu­nakan untuk capture trafik jaringan yaitu aplikasi wireshark. Hasil observasi terhadap dataset trafik jaringan dan melalui proses perhitungan menggunakan Algoritma K-NN didapatkan sebuah hasil bahwa nilai yang dihasilkan oleh klasifikasi K-NN memiliki tingkat keakuratan yang sangat tinggi. Hal ini dibuktikan dengan hasil perhi­tungan yang mencapai nilai 99,14 % yaitu dengan perhitungan k = 3. DOI: 10.24843/MITE.1601.10


Author(s):  
Oladunni Abosede Daramola

Voice over Internet Protocol (VoIP) is a significant application of the converged network principle where the voice traffic is routed over Internet Protocol shared traffic networks. VoIP traffic was modelled over wireless network and a simulation of the traffic was transmitted over the network. E-model technique was used to analyze the traffic data and also to rate VoIP QoS parameters.  The result achieved was mapped to the Mean Opinion Scale to determine the Quality of Service of VoIP over wireless networks. The results shows that QoS in the VoIP communications is significantly impacted by these parameters and the impact varies according to the parameters and also the communication aspects selected for the VoIP traffic analysis.Keywords: VoIP, QoS, E-Model and Mean Opinion Scale  


2015 ◽  
Vol 73 (2) ◽  
Author(s):  
Mohammed Al-Shargabi ◽  
Faisal Saeed ◽  
Zaid Shamsan ◽  
Abdul Samad Ismail ◽  
Sevia M Idrus

The Optical burst switching (OBS) networks have been attracting much consideration as a promising approach to build the next generation optical Internet. Aggregating the burst in the OBS networks from the high priority traffic will increase the average of the loss of its packets. However, the ratio of the high priority traffic (e.g. real-time traffic) in the burst is a very important factor for reducing the data loss, and ensuring the fairness between network traffic types. This paper introduces a statistical study based on the significant difference between the traffics to find the fairness ratio for the high priority traffic packets against the low priority traffic packets inside the data burst with various network traffic loads. The results show an improvement in the OBS quality of service (QoS) performance and the high priority traffic packets fairness ratio inside the data burst is 50 to 60%, 30 to 40%, and 10 to 20% for high, normal, and low traffic loads, respectively.


Author(s):  
Mujadad Ul Haq ◽  
Majid Ashraf ◽  
Sana ul Haq ◽  
Fazal Qudus Khan

The current internet architecture cannot manage the massive data volumes produced by the smart IoT-based healthcare systems. Very recently, the idea of Software-Defined Networking (SDN) has surfaced to resolve the issues related to networking. The incorporation of SDN technology in IoT-based healthcare systems can possibly solve the existing quality of service and data management issues. Furthermore, the IoT-based healthcare system can attain enhanced Quality of Service (QoS) through the employment of such schemes that use shortest-path routing algorithms and offer higher bandwidth to lesser delay paths as per the QoS requirements. In this study, the SDN technology is integrated with IoT-based healthcare systems, and the delay is reduced for delay-sensitive applications by using the Bellman-Ford algorithm. The proposed scheme is deployed using the POX controller and can effectively handle the existing QoS issues in the IoT healthcare systems. The simulation results of the proposed scheme show a clear drop in delay values in comparison to the benchmark scheme.


2019 ◽  
Vol 10 (2) ◽  
pp. 187 ◽  
Author(s):  
Madalena Pereira Da Silva ◽  
Mario Antonio Ribeiro Dantas ◽  
Felipe Volpato

2020 ◽  
Vol 17 (1) ◽  
pp. 27-31
Author(s):  
B. Naveen Chandar ◽  
N. Arivazhagan ◽  
K. Venkatesh

Quality of Service is considered as one of the important specifications in Software Defined Networking and we are focusing on Traffic Engineering which is capable of managing traffic characteristics like bandwidth for improving network performance. In this paper, performance evaluation of Quality of Service parameters such as Packet Delivery Ratio, Packet Delay and Packet Loss are performed with Network simulator 2 for all types of Software Defined Networking topologies. To do such evaluation on these parameters we use Traffic Engineering, which helps on improving the network performance, design mechanisms for routing to manage the traffic in network by improving the network resource usages and other major Quality of Service requisites. So in this proposed methodology, we use point-to-point topology related to traffic calculation which includes network parameters like general calculation of a framework, analyzing the traffic and future indication. Also the work process relevant to traffic management includes bandwidth of the traffic, scheduling of Quality of Service-assurance, saving power and management of traffic in Software Defined Networking. Existing technologies used for the above parameters are discussed below and our insights for future development on traffic engineering between the nodes in Software Defined Networking are offered.


Sign in / Sign up

Export Citation Format

Share Document