On Periodic Motions in a van der Pol Oscillator

2021 ◽  
pp. 63-81
Author(s):  
Yeyin Xu ◽  
Albert C. J. Luo
Author(s):  
Erika Camacho ◽  
Richard Rand ◽  
Howard Howland

In this work we study a system of two van der Pol oscillators, x and y, coupled via a “bath” z: x¨−ε(1−x2)x˙+x=k(z−x)y¨−ε(1−y2)y˙+y=k(z−y)z˙=k(x−z)+k(y−z) We investigate the existence and stability of the in-phase and out-of-phase modes for parameters ε > 0 and k > 0. To this end we use Floquet theory and numerical integration. Surprisingly, our results show that the out-of-phase mode exists and is stable for a wider range of parameters than is the in-phase mode. This behavior is compared to that of two directly coupled van der Pol oscillators, and it is shown that the effect of the bath is to reduce the stability of the in-phase mode. We also investigate the occurrence of other periodic motions by using bifurcation theory and the AUTO bifurcation and continuation software package. Our motivation for studying this system comes from the presence of circadian rhythms in the chemistry of the eyes. We present a simplified model of a circadian oscillator which shows that it can be modeled as a van der Pol oscillator. Although there is no direct connection between the two eyes, they can influence each other by affecting the concentration of melatonin in the bloodstream, which is represented by the bath in our model.


Author(s):  
Albert C. J. Luo ◽  
Arun Rajendran

In this paper, the dynamic characteristics of a simplified van der Pol oscillator are investigated. From the theory of nonsmooth dynamics, the structures of periodic and chaotic motions for such an oscillator are developed via the mapping technique. The periodic motions with a certain mapping structures are predicted analytically for m-cycles with n-periods. Local stability and bifurcation analysis for such motions are carried out. The (m:n)-periodic motions are illustrated. The further investigation of the stable and unstable periodic motions in such a system should be completed. The chaotic motion based on the Levinson donuts should be further discussed.


Author(s):  
Albert C. J. Luo ◽  
Arash Baghaei Lakeh

In this paper the approximate analytical solutions of period-1 motion in the periodically forced van der Pol oscillator are obtained by the generalized harmonic balance (HB) method. Such an approximate solution of periodic motion is given by the Fourier series expression, and the convergence of such an expression is guaranteed by the Fourier series theory of periodic functions. The approximate solution is different from traditional, approximate solution because the number of total harmonic terms (N) is determined by the precision of harmonic amplitude quantity level, set by the investigator (e.g., AN≤ɛ and ɛ=10-8). The stability and bifurcation analysis of the period-1 solutions is completed through the eigenvalue analysis of the coefficient dynamical systems of the Fourier series expressions of periodic solutions, and numerical illustrations of period-1 motions are compared to verify the analytical solutions of periodic motions. The trajectories and analytical harmonic amplitude spectrum for stable and unstable periodic motions are presented. The harmonic amplitude spectrum shows the harmonic term effects on periodic motions, and one can directly know which harmonic terms contribute on periodic motions and the convergence of the Fourier series expression is clearly illustrated.


Author(s):  
Albert C. J. Luo ◽  
Arash Baghaei Lakeh

Period-m motions in a periodically forced, van der Pol oscillator are investigated through the Fourier series expression, and the stability and bifurcation analysis of such periodic motions are carried out. To verify the approximate solutions of period-m motions, numerical illustrations are given. Period-m motions are separated by quasi-periodic motion or chaos, and the stable period-m motions are in independent periodic motion windows.


Author(s):  
Yeyin Xu ◽  
Albert C. J. Luo

This paper develops semi-analytical solutions of periodic motions of the van der Pol oscillator. The van der Pol system is discretized to form implicit mappings. Based on specific mapping structures, the semi-analytical solutions are obtained accurately, and the independent bifurcation branches of periodic motions are also presented for a better understanding of the nonlinear characteristics of the van der Pol oscillator. Stability and bifurcations are carried out though eigenvalue analysis. For comparison of analytical and numerical solutions, numerical simulation is completed and displacement and trajectories are presented.


2020 ◽  
Vol 10 (1) ◽  
pp. 1857-8365
Author(s):  
A. F. Nurullah ◽  
M. Hassan ◽  
T. J. Wong ◽  
L. F. Koo

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Yajie Li ◽  
Zhiqiang Wu ◽  
Guoqi Zhang ◽  
Feng Wang ◽  
Yuancen Wang

Abstract The stochastic P-bifurcation behavior of a bistable Van der Pol system with fractional time-delay feedback under Gaussian white noise excitation is studied. Firstly, based on the minimal mean square error principle, the fractional derivative term is found to be equivalent to the linear combination of damping force and restoring force, and the original system is further simplified to an equivalent integer order system. Secondly, the stationary Probability Density Function (PDF) of system amplitude is obtained by stochastic averaging, and the critical parametric conditions for stochastic P-bifurcation of system amplitude are determined according to the singularity theory. Finally, the types of stationary PDF curves of system amplitude are qualitatively analyzed by choosing the corresponding parameters in each area divided by the transition set curves. The consistency between the analytical solutions and Monte Carlo simulation results verifies the theoretical analysis in this paper.


Sign in / Sign up

Export Citation Format

Share Document