An Approximate Solution for Period-1 Motions in a Periodically Forced Van Der Pol Oscillator

Author(s):  
Albert C. J. Luo ◽  
Arash Baghaei Lakeh

In this paper the approximate analytical solutions of period-1 motion in the periodically forced van der Pol oscillator are obtained by the generalized harmonic balance (HB) method. Such an approximate solution of periodic motion is given by the Fourier series expression, and the convergence of such an expression is guaranteed by the Fourier series theory of periodic functions. The approximate solution is different from traditional, approximate solution because the number of total harmonic terms (N) is determined by the precision of harmonic amplitude quantity level, set by the investigator (e.g., AN≤ɛ and ɛ=10-8). The stability and bifurcation analysis of the period-1 solutions is completed through the eigenvalue analysis of the coefficient dynamical systems of the Fourier series expressions of periodic solutions, and numerical illustrations of period-1 motions are compared to verify the analytical solutions of periodic motions. The trajectories and analytical harmonic amplitude spectrum for stable and unstable periodic motions are presented. The harmonic amplitude spectrum shows the harmonic term effects on periodic motions, and one can directly know which harmonic terms contribute on periodic motions and the convergence of the Fourier series expression is clearly illustrated.

Author(s):  
Albert C. J. Luo ◽  
Arash Baghaei Lakeh

Period-m motions in a periodically forced, van der Pol oscillator are investigated through the Fourier series expression, and the stability and bifurcation analysis of such periodic motions are carried out. To verify the approximate solutions of period-m motions, numerical illustrations are given. Period-m motions are separated by quasi-periodic motion or chaos, and the stable period-m motions are in independent periodic motion windows.


2014 ◽  
Vol 24 (01) ◽  
pp. 1430004 ◽  
Author(s):  
Albert C. J. Luo ◽  
Dennis M. O'Connor

In this paper, analytical solutions for periodic motions in a parametric hardening Duffing oscillator are presented using the finite Fourier series expression, and the corresponding stability and bifurcation analysis for such periodic motions are carried out. The frequency-amplitude characteristics of asymmetric period-1 and symmetric period-2 motions are discussed. The hardening Mathieu–Duffing oscillator is also numerically simulated to verify the approximate analytical solutions of periodic motions. Period-1 asymmetric and period-2 symmetric motions are illustrated for a better understanding of periodic motions in the hardening Mathieu–Duffing oscillator.


2015 ◽  
Vol 25 (13) ◽  
pp. 1550179 ◽  
Author(s):  
Albert C. J. Luo ◽  
Bo Yu

In this paper, analytical solutions for period-[Formula: see text] motions in a two-degree-of-freedom (2-DOF) nonlinear oscillator are developed through the finite Fourier series. From the finite Fourier series transformation, the dynamical system of coefficients of the finite Fourier series is developed. From such a dynamical system, the solutions of period-[Formula: see text] motions are obtained and the corresponding stability and bifurcation analyses of period-[Formula: see text] motions are carried out. Analytical bifurcation trees of period-1 motions to chaos are presented. Displacements, velocities and trajectories of periodic motions in the 2-DOF nonlinear oscillator are used to illustrate motion complexity, and harmonic amplitude spectrums give harmonic effects on periodic motions of the 2-DOF nonlinear oscillator.


2014 ◽  
Vol 6 ◽  
pp. 817570
Author(s):  
Y. H. Qian ◽  
W. K. Liu ◽  
S. M. Chen

Using nonlinear theory to research vibration model of engineering system has important theoretical and practical significance. Multi-degree-of-freedom (MDOF) coupled van der Pol oscillator is a typical model in the nonlinear vibration; many complex dynamic problems in practical engineering can be simplified as this model to be solved in the end. This paper discusses a class of two-degrees-of-freedom (2-DOF) coupled van der Pol oscillator, which was divided into three parameters of different situations α1≠α2, β1≠β2, and γ1≠γ2 to discuss. Employing symbolic software such as Mathematica for those problems, the explicit analytical solutions of frequency ω and displacements x1( t) and x2( t) are well formulated. Results showed that the homotopy analysis method (HAM) can effectively deal with this kind of parameter of different coupled vibrators, just request the values of some parameters are not too big. Finally, we got four important theorems to simplify the solution of the nonlinear system.


Author(s):  
Albert C. J. Luo ◽  
Siyu Guo

In this paper, the analytical solutions of periodic evolutions of the periodically diffused Brusselator are obtained through the generalized harmonic balanced method. Stable and unstable solutions of period-1 and period-2 evolutions in the Brusselator are presented. Stability and bifurcations of the periodic evolution are determined by the eigenvalue analysis, and the corresponding Hopf bifurcations are presented on the analytical bifurcation tree of the periodic motions. Numerical simulations of stable period-1 and period-2 motions of Brusselator are completed. The harmonic amplitude spectra show harmonic effects on periodic motions, and the corresponding accuracy of approximate analytical solutions can be prescribed specifically.


Author(s):  
Albert C. J. Luo ◽  
Bo Yu

In this paper, analytical solutions of periodic motions in a periodically forced, damped, two-degree-of-freedom oscillator with a nonlinear hardening spring are obtained. The bifurcation trees of periodic motions are presented, and the stability and bifurcation of the periodic motion are determined through the eigenvalue analysis. Numerical simulations of stable period-1 and period-2 motions in the two-degree-of-freedom systems are presented, and the harmonic amplitude spectrums are presented to show the harmonic effects on periodic motions, and the accuracy of approximate analytical solutions can be estimated through the harmonic amplitudes.


Author(s):  
Albert C. J. Luo ◽  
Dennis M. O’Connor

Analytical solutions for period-m motions in a hardening Mathieu-Duffing oscillator are obtained using the finite Fourier series solutions, and the stability and bifurcation analysis of such periodic motions are completed. To verify the approximate analytical solutions of periodic motions, numerical simulations of the hardening Mathieu-Duffing oscillator are presented. Period-1 asymmetric and period-2 symmetric motions are illustrated.


Author(s):  
Albert C. J. Luo ◽  
Arash Baghaei Lakeh

In this paper, the approximate analytical solutions of period-1 motion in the periodically forced van der Pol oscillator are obtained by the generalized harmonic balanced method. The stability and bifurcation analysis of the period-1 solutions is completed through the eigenvalue analysis, and numerical illustrations of periodic-1 solutions are given to verify the approximate motion. This investigation provides more accurate solutions of period-1 motions in the van der pol oscillator for a better and comprehensive understanding of motions in such an oscillator.


Author(s):  
Yeyin Xu ◽  
Albert C. J. Luo

This paper develops semi-analytical solutions of periodic motions of the van der Pol oscillator. The van der Pol system is discretized to form implicit mappings. Based on specific mapping structures, the semi-analytical solutions are obtained accurately, and the independent bifurcation branches of periodic motions are also presented for a better understanding of the nonlinear characteristics of the van der Pol oscillator. Stability and bifurcations are carried out though eigenvalue analysis. For comparison of analytical and numerical solutions, numerical simulation is completed and displacement and trajectories are presented.


Author(s):  
Albert C. J. Luo ◽  
Bo Yu

In this paper, analytical solutions for period-1 motions in a periodically forced, two-degrees-of-freedom system with a nonlinear spring are developed. The stability and bifurcation of the periodic motions are completed by the eigenvalue analysis. Both symmetric and asymmetric periodic motions are found in the system. Analytical solutions of both stable and unstable period-1 are presented. Finally, numerical simulations of stable and unstable motions in the two degrees of freedom systems are presented. The harmonic amplitude spectrums show the harmonic effects on periodic motions, and the corresponding accuracy of approximate analytical solutions can be observed.


Sign in / Sign up

Export Citation Format

Share Document