Periodic Motions in a Van Der Pol Oscillator

Author(s):  
Yeyin Xu ◽  
Albert C. J. Luo

This paper develops semi-analytical solutions of periodic motions of the van der Pol oscillator. The van der Pol system is discretized to form implicit mappings. Based on specific mapping structures, the semi-analytical solutions are obtained accurately, and the independent bifurcation branches of periodic motions are also presented for a better understanding of the nonlinear characteristics of the van der Pol oscillator. Stability and bifurcations are carried out though eigenvalue analysis. For comparison of analytical and numerical solutions, numerical simulation is completed and displacement and trajectories are presented.

Author(s):  
Yeyin Xu ◽  
Albert C. J. Luo

Abstract In this paper, the semi-analytical solutions of period-1 and period-2 motions in a nonlinear Jeffcott rotor system are presented through the discrete mapping method. The periodic motions in the nonlinear Jeffcott rotor system are obtained through specific mapping structures with a certain accuracy. A bifurcation tree of period-1 to period-2 motion is achieved, and the corresponding stability and bifurcations of periodic motions are analyzed. For verification of semi-analytical solutions, numerical simulations are carried out by the mid-point scheme.


Author(s):  
Yeyin Xu ◽  
Albert C. J. Luo

Abstract In this paper, the symmetric and asymmetric period-1 motions on the bifurcation tree are obtained for a periodically driven van der Pol-Duffing hardening oscillator through a semi-analytical method. Such a semi-analytical method develops an implicit mapping with prescribed accuracy. Based on the implicit mapping, the mapping structures are used to determine periodic motions in the van der Pol-Duffing oscillator. The symmetry breaks of period-1 motion are determined through saddle-node bifurcations, and the corresponding asymmetric period-1 motions are generated. The bifurcation and stability of period-1 motions are determined through eigenvalue analysis. To verify the semi-analytical solutions, numerical simulations are also carried out.


Author(s):  
Albert C. J. Luo ◽  
Arun Rajendran

In this paper, the dynamic characteristics of a simplified van der Pol oscillator are investigated. From the theory of nonsmooth dynamics, the structures of periodic and chaotic motions for such an oscillator are developed via the mapping technique. The periodic motions with a certain mapping structures are predicted analytically for m-cycles with n-periods. Local stability and bifurcation analysis for such motions are carried out. The (m:n)-periodic motions are illustrated. The further investigation of the stable and unstable periodic motions in such a system should be completed. The chaotic motion based on the Levinson donuts should be further discussed.


Author(s):  
Albert C. J. Luo ◽  
Arash Baghaei Lakeh

In this paper the approximate analytical solutions of period-1 motion in the periodically forced van der Pol oscillator are obtained by the generalized harmonic balance (HB) method. Such an approximate solution of periodic motion is given by the Fourier series expression, and the convergence of such an expression is guaranteed by the Fourier series theory of periodic functions. The approximate solution is different from traditional, approximate solution because the number of total harmonic terms (N) is determined by the precision of harmonic amplitude quantity level, set by the investigator (e.g., AN≤ɛ and ɛ=10-8). The stability and bifurcation analysis of the period-1 solutions is completed through the eigenvalue analysis of the coefficient dynamical systems of the Fourier series expressions of periodic solutions, and numerical illustrations of period-1 motions are compared to verify the analytical solutions of periodic motions. The trajectories and analytical harmonic amplitude spectrum for stable and unstable periodic motions are presented. The harmonic amplitude spectrum shows the harmonic term effects on periodic motions, and one can directly know which harmonic terms contribute on periodic motions and the convergence of the Fourier series expression is clearly illustrated.


Author(s):  
Albert C. J. Luo ◽  
Bo Yu

In this paper, galloping vibrations of a lightly iced transmission line are investigated through a two-degree-of-freedom (2-DOF) nonlinear oscillator. The 2-DOF nonlinear oscillator is used to describe the transverse and torsional motions of the galloping cables. The analytical solutions of periodic motions of galloping cables are presented through generalized harmonic balanced method. The analytical solutions of periodic motions for the galloping cable are compared with the numerical solutions, and the corresponding stability and bifurcation of periodic motions are analyzed by the eigenvalues analysis. To demonstrate the accuracy of the analytical solutions of periodic motions, the harmonic amplitudes are presented. This investigation will help one better understand galloping mechanism of iced transmission lines.


Author(s):  
Erika Camacho ◽  
Richard Rand ◽  
Howard Howland

In this work we study a system of two van der Pol oscillators, x and y, coupled via a “bath” z: x¨−ε(1−x2)x˙+x=k(z−x)y¨−ε(1−y2)y˙+y=k(z−y)z˙=k(x−z)+k(y−z) We investigate the existence and stability of the in-phase and out-of-phase modes for parameters ε > 0 and k > 0. To this end we use Floquet theory and numerical integration. Surprisingly, our results show that the out-of-phase mode exists and is stable for a wider range of parameters than is the in-phase mode. This behavior is compared to that of two directly coupled van der Pol oscillators, and it is shown that the effect of the bath is to reduce the stability of the in-phase mode. We also investigate the occurrence of other periodic motions by using bifurcation theory and the AUTO bifurcation and continuation software package. Our motivation for studying this system comes from the presence of circadian rhythms in the chemistry of the eyes. We present a simplified model of a circadian oscillator which shows that it can be modeled as a van der Pol oscillator. Although there is no direct connection between the two eyes, they can influence each other by affecting the concentration of melatonin in the bloodstream, which is represented by the bath in our model.


2013 ◽  
Vol 774-776 ◽  
pp. 103-106
Author(s):  
Xin Xue ◽  
Lian Zhong Li ◽  
Dan Sun

Duffing-van der Pol oscillator with fractional derivative was constructed in this paper. The solution procedure was proposed with the residue harmonic balance method. The effect of different fractional orders on resonance responses of the system in steady state were analyzed for an example without parameters. The approximate solutions were contrasted with numerical solutions. The results show that the residue harmonic balance method to Duffing-van der Pol differential equation with fractional derivative is very valid.


Author(s):  
Yu Guo ◽  
Albert C. J. Luo

In this paper, the bifurcation trees of periodic motions in a parametrically excited pendulum are studied using discrete implicit maps. From the discrete maps, mapping structures are developed for periodic motions in such a parametric pendulum. Analytical bifurcation trees of periodic motions to chaos are developed through the nonlinear algebraic equations of such implicit maps in the specific mapping structures. The corresponding stability and bifurcation analysis of periodic motions is carried out. Finally, numerical results of periodic motions are presented. Many new periodic motions in the parametrically excited pendulum are discovered.


Author(s):  
Albert C. J. Luo ◽  
Chuanping Liu

Abstract In this paper, symmetric periodic motions with different excitation periods in a discontinuous dynamic system with a hyperbolic boundary are presented analytically. The switchability conditions of flows at the hyperbolic boundaries are developed. Periodic motions with specific mapping structures are predicted analytically, and numerical simulations of periodic motions are carried out. The corresponding G-functions are presented for illustration of motion switchability at the hyperbolic boundaries.


Sign in / Sign up

Export Citation Format

Share Document