Experimental Exploration of Effect of Hydrogen Enrichment on the Performance and Emissions of Dual Fuel Diesel Engine Equipped with CRDI by Varying Injection Duration

Author(s):  
M. R. Dahake ◽  
D. N. Malkhede
Fuel ◽  
2021 ◽  
Vol 302 ◽  
pp. 121096
Author(s):  
Suozhu Pan ◽  
Jiangjun Wei ◽  
Changfa Tao ◽  
Gang Lv ◽  
Yejian Qian ◽  
...  

Author(s):  
N Saravanan ◽  
G Nagarajan

Hydrogen is receiving considerable attention as an alternative fuel to replace the rapidly depleting petroleum-based fuels. Its clean burning characteristics help to meet the stringent emission norms. In this experimental investigation a single-cylinder diesel engine was converted to operate in hydrogen—diesel dual-fuel mode. Hydrogen was injected in the intake manifold and the diesel was injected directly inside the cylinder. The injection timing and the injection duration of hydrogen were optimized on the basis of performance and emissions. Best results were obtained with hydrogen injection at gas exchange top dead centre with an injection duration of 30° crank angle. The flowrate of hydrogen was optimized as 7.5l/min with optimized injection timing and duration. The optimized exhaust gas recirculation (EGR) flowrate was 20 per cent at 75 per cent load. The optimized timings were chosen on the basis of performance, emission, and combustion characteristics. The EGR technique was adopted in the hydrogen—diesel dual-fuel mode by varying the EGR flowrate from 0 per cent to 25 per cent in steps of 5 per cent. The maximum quantity of exhaust gases recycled during the test was 25 per cent (up to 75 per cent load); beyond that unstable combustion was observed with an increase in smoke. The brake thermal efficiency with 20 per cent EGR decreases by 9 per cent compared with diesel. The nitrogen oxide (NO x) emission in hydrogen manifold injection decreases by threefold with 20 per cent EGR operation at full load. The NO x emission tends to reduce drastically with increase in the EGR percentage at all load conditions owing to the increase in heat capacity of the exhaust gases. The smoke decreases by 80 per cent in the dual-fuel operation compared with diesel at 75 per cent load.


Sign in / Sign up

Export Citation Format

Share Document