Two-Stage Convolutional Neural Network for Knee Osteoarthritis Diagnosis in X-Rays

Author(s):  
Kang Wang ◽  
Xin Niu ◽  
Yong Dou ◽  
Di Yang ◽  
Dongxing Xie ◽  
...  
Author(s):  
Himadri Mukherjee ◽  
Subhankar Ghosh ◽  
Ankita Dhar ◽  
Sk Md Obaidullah ◽  
K. C. Santosh ◽  
...  

2020 ◽  
Vol 53 (2) ◽  
pp. 15374-15379
Author(s):  
Hu He ◽  
Xiaoyong Zhang ◽  
Fu Jiang ◽  
Chenglong Wang ◽  
Yingze Yang ◽  
...  

2021 ◽  
Vol 23 (07) ◽  
pp. 1116-1120
Author(s):  
Cijil Benny ◽  

This paper is on analyzing the feasibility of AI studies and the involvement of AI in COVID interrelated treatments. In all, several procedures were reviewed and studied. It was on point. The best-analyzing methods on the studies were Susceptible Infected Recovered and Susceptible Exposed Infected Removed respectively. Whereas the implementation of AI is mostly done in X-rays and CT- Scans with the help of a Convolutional Neural Network. To accomplish the paper several data sets are used. They include medical and case reports, medical strategies, and persons respectively. Approaches are being done through shared statistical analysis based on these reports. Considerably the acceptance COVID is being shared and it is also reachable. Furthermore, much regulation is needed for handling this pandemic since it is a threat to global society. And many more discoveries shall be made in the medical field that uses AI as a primary key source.


2021 ◽  
Author(s):  
James Chung Wai Cheung ◽  
Yiu Chow TAM ◽  
Lok Chun CHAN ◽  
Ping Keung CHAN ◽  
Chunyi WEN

Abstract Objectives To develop a deep convolutional neural network (CNN) for the segmentation of femur and tibia on plain x-ray radiographs, hence enabling an automated measurement of joint space width (JSW) to predict the severity and progression of knee osteoarthritis (KOA). Methods A CNN with ResU-Net architecture was developed for knee X-ray imaging segmentation. The efficiency was evaluated by the Intersection over Union (IoU) score by comparing the outputs with the annotated contour of the distal femur and proximal tibia. By leveraging imaging segmentation, the minimal and multiple JSWs in the tibiofemoral joint were estimated and then validated by radiologists’ measurements in the Osteoarthritis Initiative (OAI) dataset using Pearson correlation and Bland–Altman plot. The estimated JSWs were deployed to predict the radiographic severity and progression of KOA defined by Kellgren-Lawrence (KL) grades using the XGBoost model. The classification performance was assessed using F1 and area under receiver operating curve (AUC). Results The network has attained a segmentation efficiency of 98.9% IoU. Meanwhile, the agreement between the CNN-based estimation and radiologist’s measurement of minimal JSW reached 0.7801 (p < 0.0001). Moreover, the 32-point multiple JSW obtained the highest AUC score of 0.656 to classify KL-grade of KOA. Whereas the 64-point multiple JSWs achieved the best performance in predicting KOA progression defined by KL grade change within 48 months, with AUC of 0.621. The multiple JSWs outperform the commonly used minimum JSW with 0.587 AUC in KL-grade classification and 0.554 AUC in disease progression prediction. Conclusion Fine-grained characterization of joint space width of KOA yields comparable performance to the radiologist in assessing disease severity and progression. We provide a fully automated and efficient radiographic assessment tool for KOA.


2020 ◽  
Vol 176 ◽  
pp. 107681
Author(s):  
Di Gai ◽  
Xuanjing Shen ◽  
Haipeng Chen ◽  
Pengxiang Su

Sign in / Sign up

Export Citation Format

Share Document