Stability Enhancement of Grid Connected AC Microgrid in Modern Power Systems

Author(s):  
Vivek Ranjan ◽  
Amit Arora ◽  
Mahendra Bhadu
2015 ◽  
Vol 30 (4) ◽  
pp. 2130-2138 ◽  
Author(s):  
Lukas Sigrist ◽  
Ignacio Egido ◽  
Enrique Lobato Miguelez ◽  
Luis Rouco

Author(s):  
Isaiah Adebayo ◽  
Adisa Jimoh ◽  
Adedayo Yusuff

AbstractThis paper proposes two techniques for the identification of critical buses in a power system. The technique of Network Structural Theory Participation Factor (NSTPF) depends on the network structural interconnection of buses as captured by the admittance matrix of the system and is formulated based on the fundamental circuit theory law using eigenvalue decomposition method. Another power flow based technique which depends on the system maximum loadability, the system step size among other factors is also proposed. Traditional power flow based techniques are used as benchmarks to determine the significance of the proposed methods. To ensure voltage stability enhancement, STATCOM FACTS device is installed at the selected weak load buses of the practical Nigerian 24 bus and IEEE 30 bus test systems. The results of the simulation obtained show that, the suggested approach of NSTPF is more suitable in the identification of weak buses that are liable to voltage instability in power systems as it requires less computational burden and also saves time compared to techniques based on power flow solutions.


2015 ◽  
Vol 16 (2) ◽  
pp. 117-129 ◽  
Author(s):  
M. S. Rahman ◽  
M. A. Mahmud ◽  
H. R. Pota ◽  
M. J. Hossain ◽  
T. F. Orchi

Abstract This paper presents a new distributed agent-based scheme to enhance the transient stability of power systems by maintaining phase angle cohesiveness of interconnected generators through proper relay coordination with critical clearing time (CCT) information. In this distributed multi-agent infrastructure, intelligent agents represent various physical device models to provide dynamic information and energy flow among different physical processes of power systems. The agents can communicate with each other in a distributed manner with a final aim to control circuit breakers (CBs) with CCT information as this is the key issue for maintaining and enhancing the transient stability of power systems. The performance of the proposed scheme is evaluated on a standard IEEE 39-bus New England benchmark system under different large disturbances such as three-phase short-circuit faults and changes in loads within the systems. From the simulation results, it is found that the proposed scheme significantly enhances the transient stability of power systems as compared to a conventional scheme of static CB operation.


Sign in / Sign up

Export Citation Format

Share Document