scholarly journals Distributed Multi-Agent-Based Protection Scheme for Transient Stability Enhancement in Power Systems

2015 ◽  
Vol 16 (2) ◽  
pp. 117-129 ◽  
Author(s):  
M. S. Rahman ◽  
M. A. Mahmud ◽  
H. R. Pota ◽  
M. J. Hossain ◽  
T. F. Orchi

Abstract This paper presents a new distributed agent-based scheme to enhance the transient stability of power systems by maintaining phase angle cohesiveness of interconnected generators through proper relay coordination with critical clearing time (CCT) information. In this distributed multi-agent infrastructure, intelligent agents represent various physical device models to provide dynamic information and energy flow among different physical processes of power systems. The agents can communicate with each other in a distributed manner with a final aim to control circuit breakers (CBs) with CCT information as this is the key issue for maintaining and enhancing the transient stability of power systems. The performance of the proposed scheme is evaluated on a standard IEEE 39-bus New England benchmark system under different large disturbances such as three-phase short-circuit faults and changes in loads within the systems. From the simulation results, it is found that the proposed scheme significantly enhances the transient stability of power systems as compared to a conventional scheme of static CB operation.

ENERGYO ◽  
2018 ◽  
Author(s):  
M. S. Rahman ◽  
M. A. Mahmud ◽  
H. R. Pota ◽  
M. J. Hossain ◽  
T. F. Orchi

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2975 ◽  
Author(s):  
Zhenzhi Lin ◽  
Yuxuan Zhao ◽  
Shengyuan Liu ◽  
Fushuan Wen ◽  
Yi Ding ◽  
...  

Transient stability after islanding is of crucial importance because a controlled islanding strategy is not feasible if transient stability cannot be maintained in the islands created. A new indicator of transient stability for controlled islanding strategies, defined as the critical islanding time (CIT), is presented for slow coherency-based controlled islanding strategies to determine whether all the islands created are transiently stable. Then, the stable islanding interval (SII) is also defined to determine the appropriate time frame for stable islanding. Simulations were conducted on the New England test system–New York interconnected system to demonstrate the characteristics of the critical islanding time and stable islanding interval. Simulation results showed that the answer for when to island could be easily reflected by the proposed CIT and SII indicators. These two indicators are beneficial to power dispatchers to keep the power systems transiently stable and prevent widespread blackouts.


2021 ◽  
Vol 54 (1) ◽  
pp. 147-154
Author(s):  
Issam Griche ◽  
Sabir Messalti ◽  
Kamel Saoudi

The uncertainty of wind power brings great challenges to large-scale wind power integration. The conventional integration of wind power is difficult to adapt the demand of power grid planning and operation. This paper proposes an instantaneous power control strategy for voltage improvement in power networks using wind turbine improving the dynamical response of power systems performances (voltage and transient stability) after fault. In which the proposed control algorithm based on a new advanced control strategy to control the injected wind power into power system. The efficiency of developed control strategy has been tested using IEEE 9 Bus. Simulation results have showed that the proposed method perform better to preserve optimal performances over wide range of disturbances for both considered scenarios studied short circuit and variable loads.


Author(s):  
Sourav Paul ◽  
Provas Kumar Roy

Optimal power flow with transient stability constraints (TSCOPF) becomes an effective tool of many problems in power systems since it simultaneously considers economy and dynamic stability of power system. TSC-OPF is a non-linear optimization problem which is not easy to deal directly because of its huge dimension. This paper presents a novel and efficient optimisation approach named the teaching learning based optimisation (TLBO) for solving the TSCOPF problem. The quality and usefulness of the proposed algorithm is demonstrated through its application to four standard test systems namely, IEEE 30-bus system, IEEE 118-bus system, WSCC 3-generator 9-bus system and New England 10-generator 39-bus system. To demonstrate the applicability and validity of the proposed method, the results obtained from the proposed algorithm are compared with those obtained from other algorithms available in the literature. The experimental results show that the proposed TLBO approach is comparatively capable of obtaining higher quality solution and faster computational time.


2002 ◽  
pp. 98-108
Author(s):  
Rahul Singh ◽  
Mark A. Gill

Intelligent agents and multi-agent technologies are an emerging technology in computing and communications that hold much promise for a wide variety of applications in Information Technology. Agent-based systems range from the simple, single agent system performing tasks such as email filtering, to a very complex, distributed system of multiple agents each involved in individual and system wide goal-oriented activity. With the tremendous growth in the Internet and Internet-based computing and the explosion of commercial activity on the Internet in recent years, intelligent agent-based systems are being applied in a wide variety of electronic commerce applications. In order to be able to act autonomously in a market environment, agents must be able to establish and maintain trust relationships. Without trust, commerce will not take place. This research extends previous work in intelligent agents to include a mechanism for handling the trust relationship and shows how agents can be fully used as intermediaries in commerce.


Sign in / Sign up

Export Citation Format

Share Document