Techniques for the Identification of Critical Nodes Leading to Voltage Collapse in a Power System

Author(s):  
Isaiah Adebayo ◽  
Adisa Jimoh ◽  
Adedayo Yusuff

AbstractThis paper proposes two techniques for the identification of critical buses in a power system. The technique of Network Structural Theory Participation Factor (NSTPF) depends on the network structural interconnection of buses as captured by the admittance matrix of the system and is formulated based on the fundamental circuit theory law using eigenvalue decomposition method. Another power flow based technique which depends on the system maximum loadability, the system step size among other factors is also proposed. Traditional power flow based techniques are used as benchmarks to determine the significance of the proposed methods. To ensure voltage stability enhancement, STATCOM FACTS device is installed at the selected weak load buses of the practical Nigerian 24 bus and IEEE 30 bus test systems. The results of the simulation obtained show that, the suggested approach of NSTPF is more suitable in the identification of weak buses that are liable to voltage instability in power systems as it requires less computational burden and also saves time compared to techniques based on power flow solutions.

Author(s):  
Isaiah G. Adebayo ◽  
Yanxia Sun

AbstractModern power systems are increasingly becoming more complex and thus become vulnerable to voltage collapse due to constant increase in load demand and introduction of new operation enhancement technologies. In this study, an approach which is based on network structural properties of a power system is proposed for the identification of critical nodes that are liable to voltage instability. The proposed Network Structurally Based Closeness Centrality (NSBCC) is formulated based on the admittance matrix between the interconnection of load to load nodes in a power system. The vertex (node) that has the highest value of NSBCC is taken as the critical node of the system. To demonstrate the significance of the concept formulated, the comparative analysis of the proposed NSBCC with the conventional techniques such as Electrical Closeness Centrality (ECC), Closeness Voltage Centrality (CVC) and Modal Analysis is performed. The effectiveness of all the approaches presented is tested on both IEEE 30 bus and the Southern Indian 10-bus power systems. Results of simulation obtained show that the proposed NSBCC could serve as valuable tool for rapid real time voltage stability assessment in a power system.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 322 ◽  
Author(s):  
Ping He ◽  
Seyed Arefifar ◽  
Congshan Li ◽  
Fushuan Wen ◽  
Yuqi Ji ◽  
...  

The well-developed unified power flow controller (UPFC) has demonstrated its capability in providing voltage support and improving power system stability. The objective of this paper is to demonstrate the capability of the UPFC in mitigating oscillations in a wind farm integrated power system by employing eigenvalue analysis and dynamic time-domain simulation approaches. For this purpose, a power oscillation damping controller (PODC) of the UPFC is designed for damping oscillations caused by disturbances in a given interconnected power system, including the change in tie-line power, the changes of wind power outputs, and others. Simulations are carried out for two sample power systems, i.e., a four-machine system and an eight-machine system, for demonstration. Numerous eigenvalue analysis and dynamic time-domain simulation results confirm that the UPFC equipped with the designed PODC can effectively suppress oscillations of power systems under various disturbance scenarios.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 737
Author(s):  
Michał Kosmecki ◽  
Robert Rink ◽  
Anna Wakszyńska ◽  
Roberto Ciavarella ◽  
Marialaura Di Somma ◽  
...  

Along with the increasing share of non-synchronous power sources, the inertia of power systems is being reduced, which can give rise to frequency containment problems should an outage of a generator or a power infeed happen. Low system inertia is eventually unavoidable, thus power system operators need to be prepared for this condition. This paper addresses the problem of low inertia in the power system from two different perspectives. At a system level, it proposes an operation planning methodology, which utilises a combination of power flow and dynamic simulation for calculation of existing inertia and, if need be, synthetic inertia (SI) to fulfil the security criterion of adequate rate of change of frequency (RoCoF). On a device level, it introduces a new concept for active power controller, which can be applied virtually to any power source with sufficient response time to create synthetic inertia. The methodology is demonstrated for a 24 h planning period, for which it proves to be effective. The performance of SI controller activated in a battery energy storage system (BESS) is positively validated using a real-time digital simulator (RTDS). Both proposals can effectively contribute to facilitating the operation of low inertia power systems.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Selvarasu Ranganathan ◽  
S. Rajkumar

The selection of positions for unified power flow controller (UPFC) placement in transmission network is an essential factor, which aids in operating the system in a more reliable and secured manner. This paper focuses on strengthening the power system performance through UPFC placement employing self-adaptive firefly algorithm (SAFA), which selects the best positions along with parameters for UPFC placement. Three single objectives of real power loss reduction, voltage profile improvement, and voltage stability enhancement are considered in this work. IEEE 14, 30, and 57 test systems are selected to accomplish the simulations and to reveal the efficacy of the proposed SAFA approach; besides, solutions are compared with two other algorithms solutions of honey bee algorithm (HBA) and bacterial foraging algorithm (BFA). The proposed SAFA contributes real power loss reduction, voltage profile improvement, and voltage stability enhancement by optimally choosing the placement for UPFC.


Load frequency control (LFC) in interconnected power system of small distribution generation (DG) for reliability in distribution system. The main objective is to performance evaluation load frequency control of hybrid for interconnected two-area power systems. The simulation consist of solar farm 10 MW and gasifier plant 300 kW two-area in tie line. This impact LFC can be address as a problem on how to effectively utilize the total tie-line power flow at small DG. To performance evaluation and improve that defect of LFC, the power flow of two-areas LFC system have been carefully studied, such that, the power flow and power stability is partially LFC of small DG of hybrid for interconnected two-areas power systems. Namely, the controller and structural properties of the multi-areas LFC system are similar to the properties of hybrid for interconnected two-area LFC system. Inspired by the above properties, the controller that is propose to design some proportional-integral-derivative (PID) control laws for the two-areas LFC system successfully works out the aforementioned problem. The power system of renewable of solar farm and gasifier plant in interconnected distribution power system of area in tie – line have simulation parameter by PID controller. Simulation results showed that 3 types of the controller have deviation frequency about 0.025 Hz when tie-line load changed 1 MW and large disturbance respectively. From interconnected power system the steady state time respond is 5.2 seconds for non-controller system, 4.3 seconds for automatic voltage regulator (AVR) and 1.4 seconds for under controlled system at 0.01 per unit (p.u.) with PID controller. Therefore, the PID control has the better efficiency non-controller 28 % and AVR 15 %. The result of simulation in research to be interconnected distribution power system substation of area in tie - line control for little generate storage for grid connected at better efficiency and optimization of renewable for hybrid. It can be conclude that this study can use for applying to the distribution power system to increase efficiency and power system stability of area in tie – line.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3365 ◽  
Author(s):  
Lukas Wienholt ◽  
Ulf Müller ◽  
Julian Bartels

The paradigm shift of large power systems to renewable and decentralized generation raises the question of future transmission and flexibility requirements. In this work, the German power system is brought to focus through a power transmission grid model in a high spatial resolution considering the high voltage (110 kV) level. The fundamental questions of location, type, and size of future storage units are addressed through a linear optimal power flow using today’s power grid capacities and a generation portfolio allowing a 66% generation share of renewable energy. The results of the optimization indicate that for reaching a renewable energy generation share of 53% with this set-up, a few central storage units with a relatively low overall additional storage capacity of around 1.6 GW are required. By adding a constraint of achieving a renewable generation share of at least 66%, storage capacities increase to almost eight times the original capacity. A comparison with the German grid development plan, which provided the basis for the power generation data, showed that despite the non-consideration of transmission grid extension, moderate additional storage capacities lead to a feasible power system. However, the achievement of a comparable renewable generation share provokes a significant investment in additional storage capacities.


Sign in / Sign up

Export Citation Format

Share Document