Angle Modulation

2021 ◽  
pp. 289-333
Author(s):  
Sunil Bhooshan
Keyword(s):  
Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 598
Author(s):  
Lin Wang ◽  
Ronghua Shi ◽  
Jian Dong

The dragonfly algorithm (DA) is a new intelligent algorithm based on the theory of dragonfly foraging and evading predators. DA exhibits excellent performance in solving multimodal continuous functions and engineering problems. To make this algorithm work in the binary space, this paper introduces an angle modulation mechanism on DA (called AMDA) to generate bit strings, that is, to give alternative solutions to binary problems, and uses DA to optimize the coefficients of the trigonometric function. Further, to improve the algorithm stability and convergence speed, an improved AMDA, called IAMDA, is proposed by adding one more coefficient to adjust the vertical displacement of the cosine part of the original generating function. To test the performance of IAMDA and AMDA, 12 zero-one knapsack problems are considered along with 13 classic benchmark functions. Experimental results prove that IAMDA has a superior convergence speed and solution quality as compared to other algorithms.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2435
Author(s):  
Peter Bober ◽  
Želmíra Ferková

In this paper, a comparison of the simple firing angle modulation method (FAM) and the more advanced torque sharing function (TSF)-based control of switched reluctance motor (SRM) is presented. The off-line procedure to tailor and optimize the parameters of chosen methods for off-the-shelf SRM is explained. Objective functions for optimization are motor efficiency, torque ripple, and integral square error. The off-line optimization uses a finite element method (FEM) model of the SRM. The model was verified by measurement on the SRM. Simulation results showed that FAM has comparable efficiency to TSF, but has a much higher value of torque ripple. The presented off-line procedure can be used for single or multi-objective optimization.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3178 ◽  
Author(s):  
Arcadio Perilla ◽  
José Luis Rueda Torres ◽  
Stelios Papadakis ◽  
Elyas Rakhshani ◽  
Mart van der Meijden ◽  
...  

During the last few years, electric power systems have undergone a widespread shift from conventional fossil-based generation toward renewable energy-based generation. Variable speed wind generators utilizing full-scale power electronics converters are becoming the preferred technology among other types of renewable-based generation, due to the high flexibility to implement different control functions that can support the stabilization of electrical power systems. This paper presents a fundamental study on the enhancement of transient stability in electrical power systems with increasing high share (i.e., above 50%) of power electronic interfaced generation. The wind generator type IV is taken as a representative form of power electronic interfaced generation, and the goal is to investigate how to mitigate the magnitude of the first swing while enhancing the damping of rotor angle oscillations triggered by major electrical disturbances. To perform such mitigation, this paper proposes a power-angle modulation (PAM) controller to adjust the post-fault active power response of the wind generator type IV, after a large disturbance occurs in the system. Based on a small size system, the PAM concept is introduced. The study is performed upon time-domain simulations and analytical formulations of the power transfer equations. Additionally, the IEEE 9 BUS system and the test model of Great Britain’s system are used to further investigate the performance of the PAM controller in a multi-machine context, as well as to perform a comparative assessment of the effect of different fault locations, and the necessary wind generators that should be equipped with PAM controllers.


Sign in / Sign up

Export Citation Format

Share Document