blade passage
Recently Published Documents


TOTAL DOCUMENTS

227
(FIVE YEARS 10)

H-INDEX

19
(FIVE YEARS 0)

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7626
Author(s):  
Tao Guo ◽  
Lihui Xu ◽  
Wenquan Wang

The inter-blade passage vortex, the vortex rope of the draft tube, and the vortex in the guide apparatus are the characteristics of flow instability of the Francis turbine, which may lead to fatigue failure in serious cases. In the current study, in order to accurately capture the transient turbulent characteristics of flow under different conditions and fully understand the flow field and vortex structure, we conduct a simulation that adopts sliding grid technology and the large-eddy simulation (LES) method based on the wall-adapting local eddy viscosity (WALE) model. Using the pressure iso-surface method, the Q criterion, and the latest third-generation Liutex vortex identification method, this study analyzes and compares the inter-blade passage vortex, the vortex rope of the draft tube, and the outflow and vortex in the guide apparatus, focusing on the capture ability of flow field information by various vortex identification methods and the unique vortex structure under the condition of a small opening. The results indicate that the dependence of Liutex on the threshold is small, and the scale range of the flow direction vortex captured by Liutex is wider, but the ability of the spanwise vortex is relatively weak. The smaller the opening, the more disorderly the vortexes generated in each component and the more unstable the flow field. In the draft tube, the original shape of the vortex rope is destroyed due to the interaction between vortexes. Under the condition of a small opening, an inter-blade passage vortex is generated, affecting the efficient and stable operation of the turbine.



Aerospace ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 296
Author(s):  
Giorgio Palma ◽  
Lorenzo Burghignoli ◽  
Francesco Centracchio ◽  
Umberto Iemma

Modern turbofans with high bypass ratios, low blade passage frequencies and short nacelles require continuous development of acoustic linings to achieve the noise reductions expected by the international aviation authorities. Metamaterials and metafluids have been recently proposed as promising technologies for designing innovative acoustic treatments dedicated to reducing aeronautic turbofan noise emissions. In this work, a phase-gradient metasurface treatment is investigated as a way to tackle the noise radiation from an axially symmetric nacelle. This paper aims to study the potential benefits of the mentioned technology, and is not an attempt to design a complete new liner or nacelle. The metasurface is modelled through an equivalent metafluid, and a simulation-based optimisation is used in defining the design parameters. The tonal contribution of the blade passage frequency is considered, and the numerical results with the metafluid optimised on one azimuthal mode at a time show a significant effect in terms of acoustic levels and directivity over an arc of virtual receivers.



2021 ◽  
Vol 12 (2) ◽  
pp. 467-474
Author(s):  
Joko Waluyo ◽  
◽  
Kevin Mahardhika ◽  
Rahmat Waluyo

Diameter trimming is one of the most common modification on centrifugal pump impeller aimed to keep conformity between pump performance and required head and flow rate. In its application, centrifugal pump performance with trimmed diameter could be predicted by using affinity equations which based on geometrical similarity between pre- and post-trimming impeller. However, diameter trimming also alter the dimension ratio in blade passage which prompt further investigation on performance prediction of pump with trimmed impeller diameter. This research is carried out by using numerical simulation to analyze performance of pump with trimmed impeller diameter. The simulation is conducted on radial-type centrifugal pump with impeller diameter 105 mm, inlet blade angle 200, outlet blade angle 280, and operating on mass flow rate 1.5 kg/s at rotational speed 2800 rpm. RNG k-e model is used to model turbulence while trimmed diameter values are 100 mm and 95 mm. Results indicate that there is significant differences on head and consumed power between predicted value by simulation and predicted value obtained by employing affinity equations.



2021 ◽  
Author(s):  
Rajavamsi Gangipamula ◽  
Pritanshu Ranjan ◽  
Ranjit S. Patil

Abstract Present work aims to investigate the hydro acoustic behavior of a typical low specific speed radial type centrifugal pump with narrow channel impeller passage. The blade design parameters play an important role in hydraulic noise generation by a low specific speed radial pump with narrow impeller channels. Though, these pumps are hydraulically efficient for a given design point, the hydraulic noise production may be higher at duty point. The blade passage length along with the outlet width of the impeller are the two main design parameters of a radial impeller with narrow channels, which can impact the flow quality along the impeller blade passage. To understand the effect of the narrow channel, initially steady state simulation is conducted to predict and validate the hydraulic performance. Then transient simulations were conducted using Detached Eddy Simulation (DES) using STAR-CCM+ to predict the hydro acoustic behavior of the pump in terms of pressure fluctuations and far field noise spectra of the pump at specific points. The velocity profiles along the impeller channels, shows the formation of wake region, which strongly affects the jet wake flow phenomenon near impeller trailing edge. This results in high pressure fluctuations near impeller outlet.



2021 ◽  
Author(s):  
Tobias Schubert ◽  
Reinhard Niehuis

Abstract An investigation of endwall loss development is conducted using the T106A low-pressure turbine cascade. (U)RANS simulations are complemented by measurements under engine relevant flow conditions (M2th = 0.59, Re2th = 2·105). The effects of unsteady inflow conditions and varying inlet endwall boundary layer are compared in terms of secondary flow attenuation downstream of the blade passage, analyzing steady, time-averaged, and time-resolved flow fields. While both measures show similar effects in the turbine exit plane, the upstream loss development throughout the blade passage is quite different. A variation of the endwall boundary layer alters the slope of the axial loss generation beginning around the midpoint of the blade passage. Periodically incoming wakes, however, cause a spatial redistribution of the loss generation with a premature loss increase due to wake interaction in the front part of the passage followed by an attenuation of the profile- and secondary loss generation in the aft section of the blade passage. Ultimately, this leads to a convergence of the downstream loss values in the steady and unsteady inflow cases.



2021 ◽  
Author(s):  
Jonathon Howard ◽  
Abraham Engeda

Abstract Centrifugal/centrifugal compressor designs within pressure ratio range of 2.0–4.0 have well-established guidelines for most common gases, and it is possible to determine optimum compressor geometry for numerous applications as characterized by specific speed or flow coefficient. Specific speed can be correlated to various combinations of inlet tip-exit diameter ratio, inlet hub-tip diameter ratio, blade exit back-sweep, and inlet-tip absolute tangential velocity for solid body pre-whirl. For centrifugal compressors in the pressure ratio range of 1.2–1.8, commonly known as blowers, there lacks organized and systematic optimum design procedures. Blowers, among many others uses, are widely used in HVAC, and provide air for ventilation and industrial process requirements. Due to broad applications in industry, blowers comprise an important sub-group of turbomachinery. This paper provides analysis and design data for blowers in the pressure ratio range of 1.2–1.8. Specific speed is determined from the data provided, and accurate correlations to possible achievable maximum efficiencies are established within a good operational range. Furthermore, plots of impeller exit flow angle, inlet tip-exit diameter ratio, inlet hub-tip diameter ratio, head coefficient, and blade exit back-sweep are provided over a range of specific speeds for various tip speeds to permit rapid selection of optimum blower size and shape for a variety of applications. The design procedure follows a method that enables efficient blade passage sizing. When the blower inlet and outlet velocities, diameters, blade widths, and blade angles are determined and fixed, the blade passage and profile will be sized by applying an energy, momentum, and continuity balance analysis. The application of these equations equates the proper pressure and velocity distribution throughout the blower impeller. Generally, the passage is designed to accommodate an optimum prescribed diffusion rate.



Author(s):  
Zhiyuan Cao ◽  
Xi Gao ◽  
Cheng Song ◽  
Xiang Zhang ◽  
Fei Zhang ◽  
...  

In highly loaded tandem compressor cascades, corner separations can still exist. In order to eliminate corner separations in highly loaded tandem compressor cascades, incoming vortex–corner separation interaction mechanism was investigated. Different schemes of the vortex generators, which located at different pitchwise locations and could generate vortexes with different rotation directions, were designed and investigated numerically. Results show that, severe corner separation occurred at the front blade passage of the tandem cascade; by utilizing flow control method of incoming vortex–corner separation interaction, the corner separation could be reduced significantly. The optimal control effect of incoming vortex on corner separation was achieved with anticlockwise rotation and the vortex generator is located right ahead of the leading edge of tandem cascade, a maximum loss coefficient reduction of 21.8% being achieved. Different from single blade configuration, the boundary layer of tandem cascade was regenerated at rear blade suction surface due to the injection flow from blade gap between the two blades. Though corner separations could be reduced at both conditions, the loss of tandem cascade with clockwise incoming vortex is higher than that with anticlockwise vortex, and a smaller corner separation region at suction surface was achieved by utilizing clockwise vortex. The mechanism was that anticlockwise incoming vortex reduced the corner separation but increased secondary flow, while clockwise vortex enhanced passage vortex and decreased secondary flow. For clockwise incoming vortex near pressure surface, the vortex would be divided into two parts at the leading edge of rear blade, one would go through the blade gap and deteriorate flow fluid near rear blade suction surface, the other flowed downstream along pressure surface. The rotation direction of different incoming vortexes became the same as the passage vortex at rear blade passage of tandem cascade, which was mainly due to the effect of secondary flow.



2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ryszard Szwaba ◽  
Piotr Kaczynski ◽  
Janusz Telega

An experimental investigation was carried out to study the effect of the boundary layer transition on the flow dynamics in the blade passage of a compressor cascade. A model of a turbine compressor passage was designed and assembled in a transonic wind tunnel for this purpose. Two different flow control methods were used in the experiment to induce the transition upstream of the shock wave, one concerning the microstep application and the other using distributed roughness strips. Two locations of spanwise microsteps for the transition trigger were chosen, one at the leading edge and the other closer to the shock wave position. The distributed roughness in the form of standard sandpaper strips with different heights was applied in three various locations on the blade upstream of the shock. The main objective of investigations is to present the influence of the laminar and turbulent shock wave-boundary layer interaction on the flow dynamics in a compressor fan passage, and the specific objective is to show how the parameters of particular transition control methods affect the flow dynamics in the investigated channel. The major challenge for this research was to minimize the disturbance caused by the microstep or roughness to the laminar boundary layer, while still ensuring a successful transition. Very interesting results were obtained in the flow control application for the boundary layer transition control, demonstrating a positive effect on the flow unsteadiness in changing the nature of the interaction.



2021 ◽  
Vol 143 (8) ◽  
Author(s):  
Kai Zhou ◽  
Chao Zhou

Abstract Experimental and numerical methods were used to investigate the aerodynamic effects of a near-casing streamwise incoming vortex flow on the tip leakage flow of different tip geometries in an unshrouded high-pressure turbine. A flat tip, a cavity tip, and a suction side winglet tip were investigated with the quasi-steady method first. A swirl generator was used to produce the incoming vortex in a linear cascade. In the flat tip case, the incoming vortex interacts with the tip leakage flow and the two vortices gradually mix together. The tip leakage loss is reduced due to the streamwise momentum supplement within the tip leakage vortex core. For the cavity tip, the tip leakage vortex appears at a location relatively downstream in the blade passage compared with the flat tip and no evident vortex interaction is observed. The incoming vortex causes extra viscous dissipation within the blade passage and increases the aerodynamic loss for the cavity tip. For the winglet tip, the extension of the suction side winglet tends to push the incoming vortex and the tip leakage vortex move and mix together, thus reducing the loss. Then, the effects of periodic unsteady vortex transportations were investigated by conducting unsteady Reynolds-Averaged Navier–Stokes (URANS) simulations. The incoming vortex is stretched as it transports downstream. The unsteady incoming vortex is easier to interact with the tip leakage vortex for the winglet tip. As a result, the winglet tip is the most efficient tip design with unsteady incoming flow among the three tips and achieves a 3.7% reduction of mixed-out loss coefficient compared with the flat tip, larger than 2.8% reduction in the uniform inlet condition. The detailed loss mechanism is discussed in this paper.



2021 ◽  
Vol 143 (4) ◽  
Author(s):  
A. J. Carvalho Figueiredo ◽  
B. D. J. Schreiner ◽  
A. W. Mesny ◽  
O. J. Pountney ◽  
J. A. Scobie ◽  
...  

Abstract Air-cooled gas turbines employ bleed air from the compressor to cool vulnerable components in the turbine. The cooling flow, commonly known as purge air, is introduced at low radius, before exiting through the rim-seal at the periphery of the turbine discs. The purge flow interacts with the mainstream gas path, creating an unsteady and complex flowfield. Of particular interest to the designer is the effect of purge on the secondary-flow structures within the blade passage, the extent of which directly affects the aerodynamic loss in the stage. This paper presents a combined experimental and computational fluid dynamics (CFD) investigation into the effect of purge flow on the secondary flows in the blade passage of an optically accessible one-stage turbine rig. The experimental campaign was conducted using volumetric velocimetry (VV) measurements to assess the three-dimensional inter-blade velocity field; the complementary CFD campaign was carried out using unsteady Reynolds-averaged Navier–Stokes (URANS) computations. The implementation of VV within a rotating environment is a world first and offers an unparalleled level of experimental detail. The baseline flow-field, in the absence of purge flow, demonstrated a classical secondary flow-field: the rollup of a horseshoe vortex, with subsequent downstream convection of a pressure-side and suction-side leg, the former transitioning in to the passage vortex. The introduction of purge, at 1.7% of the mainstream flowrate, was shown to modify the secondary flow-field by enhancing the passage vortex, in both strength and span-wise migration. The computational predictions were in agreement with the enhancement revealed by the experiments.



Sign in / Sign up

Export Citation Format

Share Document