Phosphorus Availability in Soils and Use Efficiency for Food and Environmental Sustainability

Author(s):  
Pritpal Singh ◽  
Rajan Bhatt ◽  
Gagandeep Kaur
Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 745
Author(s):  
Federico Grillo ◽  
Ilaria Piccoli ◽  
Ivan Furlanetto ◽  
Francesca Ragazzi ◽  
Silvia Obber ◽  
...  

Digestate is an anaerobic digestion by-product rich in inorganic-nitrogen (N) that can be used as an organic fertilizer. Digestate agronomic efficiency and its impact on the environment have not yet been studied in detail, therefore this study tries to fill this gap. The agro-environmental sustainability of digestate fractions was evaluated in a holistic way by comparing the best management practices available in the Veneto Region agroecosystem. A farm experiment involving mineral fertilizer and both liquid and solid digestate fractions was established involving silage winter wheat and silage maize as main crops. Agro-environmental sustainability was investigated coupling crop performance analysis (e.g., yield, N uptake and N use efficiency (NUE)) with a novel proposed agro-environmental sustainability index (AESI) (i.e., product of the dry yield and NUE). The results showed that the liquid digestate fraction gave agronomic performances comparable to mineral fertilizers and a satisfying AESI while solid digestate showed lower performances. In conclusion, liquid digestate fractions might be an effective substitute for mineral fertilizers in the Veneto region agroecosystem reaching encouraging levels of agro-environmental sustainability. On the contrary, longer-term experiments are requested to evaluate solid digestate fraction sustainability.


Crop Science ◽  
1992 ◽  
Vol 32 (4) ◽  
pp. 1010-1015 ◽  
Author(s):  
William A. Payne ◽  
Malcolm C. Drew ◽  
Lloyd R. Hossner ◽  
Robert J. Lascano ◽  
Arthur B. Onken ◽  
...  

2020 ◽  
Vol 261 ◽  
pp. 121213 ◽  
Author(s):  
Martí Rufí-Salís ◽  
Anna Petit-Boix ◽  
Gara Villalba ◽  
David Sanjuan-Delmás ◽  
Felipe Parada ◽  
...  

2019 ◽  
Vol 56 (Special Issue) ◽  
pp. 125-135
Author(s):  
D Panda ◽  
AK Nayak ◽  
S Mohanty

Nitrogen is the one of most limiting nutrient for rice production, and in India rice cultivation alone accounts approximately 37% of the total fertilizer-N consumption in the year 1917-18. However, 60-70% of applied N is lost from the rice ecosystem system in the form of reactive N species such as ammonia (NH3), nitrous oxide (N2O), nitric oxide (NO), nitrogen dioxide (NO2) and nitrate (NO3) through various processes. Hence enhancing N use efficiency through improved N management is of greater importance for ensuring food security and environmental sustainability. The decisions on optimum level, time, form and method of N application are crucial to an efficient N management strategy. Earlier studies suggested blanket fertilizer recommendations for different rice ecosystems and soil test based fertilizer applications. Subsequently, innovative methods of N application including deep placement of urea super granule in reduced zone, subsurface incorporation of urea through farmer friendly methods were also recommended Recently several advancements have been made in N management practices for rice crop such as site specific N management, real time N management using leaf colour chart (LCC) and customised LCC, enhanced efficiency N fertilizers (EENF) using N transformation regulators and GIS and remote sensing (RS) - based N application technologies. The objective of this paper is to comprehensively discuss about the established and emerging N management options for improving yield, N use efficiency and environmental sustainability of rice.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1386
Author(s):  
Qiyun Cheng ◽  
Juanjuan Ma ◽  
Rong Ren ◽  
Lijian Zheng ◽  
Xianghong Guo ◽  
...  

Water storage pit irrigation (WSPI) has been proven effective in improving the water use efficiency of fruit trees in Loess Plateau, but so far there are still no matching efficient fertilization management methods. A two-year experiment was conducted to explore the management strategy of fertilization under the consideration of apple production and environmental sustainability. N isotope tracer technique was used to study the distribution of labelled nitrogen in soil, leaf, root and fruit. Moreover, the yield in different fertilizer managements were observed to evaluate the apple production. The results showed that increasing the amount of fertilizer could increase the accumulation of fertilizer nitrogen in soil, but also increased the risk of nitrogen leaching. Under the same amount of fertilizer, split fertilization can effectively increase of fertilizer nitrogen in soil by a mean of 4.7 times. Further, N300 application with split fertilization effectively increased apple yield. The yield of N300II treatment was higher than other treatment by maximum 68.5%. In addition, the root system mainly absorbed the fertilizer nitrogen applied in the current year, and the fruit mainly absorbed the fertilizer nitrogen applied in the previous year, but there was no significant difference in the leaves.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 775 ◽  
Author(s):  
Aziiba Emmanuel Asibi ◽  
Qiang Chai ◽  
Jeffrey A. Coulter

Nitrogen (N) fertilizers are needed to enhance maize (Zea mays L.) production. Maize plays a major role in the livestock industry, biofuels, and human nutrition. Globally, less than one-half of applied N is recovered by maize. Although the application of N fertilizer can improve maize yield, excess N application due to low knowledge of the mechanisms of nitrogen use efficiency (NUE) poses serious threats to environmental sustainability. Increased environmental consciousness and an ever-increasing human population necessitate improved N utilization strategies in maize production. Enhanced understanding of the relationship between maize growth and productivity and the dynamics of maize N recovery are of major significance. A better understanding of the metabolic and genetic control of N acquisition and remobilization during vegetative and reproductive phases are important to improve maize productivity and to avoid excessive use of N fertilizers. Synchronizing the N supply with maize N demand throughout the growing season is key to improving NUE and reducing N loss to the environment. This review examines the mechanisms of N use in maize to provide a basis for driving innovations to improve NUE and reduce risks of negative environmental impacts.


2019 ◽  
Vol 56 (Special) ◽  
pp. 125-135
Author(s):  
D Panda ◽  
AK Nayak ◽  
S Mohanty

Nitrogen is the one of most limiting nutrient for rice production, and in India rice cultivation alone accounts approximately 37% of the total fertilizer-N consumption in the year 1917-18. However, 60-70% of applied N is lost from the rice ecosystem system in the form of reactive N species such as ammonia (NH3), nitrous oxide (N2O), nitric oxide (NO), nitrogen dioxide (NO2) and nitrate (NO3) through various processes. Hence enhancing N use efficiency through improved N management is of greater importance for ensuring food security and environmental sustainability. The decisions on optimum level, time, form and method of N application are crucial to an efficient N management strategy. Earlier studies suggested blanket fertilizer recommendations for different rice ecosystems and soil test based fertilizer applications. Subsequently, innovative methods of N application including deep placement of urea super granule in reduced zone, subsurface incorporation of urea through farmer friendly methods were also recommended Recently several advancements have been made in N management practices for rice crop such as site specific N management, real time N management using leaf colour chart (LCC) and customised LCC, enhanced efficiency N fertilizers (EENF) using N transformation regulators and GIS and remote sensing (RS) - based N application technologies. The objective of this paper is to comprehensively discuss about the established and emerging N management options for improving yield, N use efficiency and environmental sustainability of rice.


2013 ◽  
Vol 34 (1) ◽  
pp. 31-38
Author(s):  
Fernando C. Bachiega Zambrosi ◽  
Dirceu Mattos Júnior ◽  
José Antônio Quaggio ◽  
Rodrigo Marcelli Boaretto

Sign in / Sign up

Export Citation Format

Share Document