n utilization
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 54)

H-INDEX

23
(FIVE YEARS 3)

Horticulturae ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 30
Author(s):  
María Carmen Piñero ◽  
Ginés Otálora ◽  
Jacinta Collado-González ◽  
Josefa López-Marín ◽  
Francisco M. del Amor

Aquaponics is a sustainable technique that is respectful to the environment, as it reuses products and minimizes the consumption of new materials. The combination of this technique with the foliar application of selenium (as Na2SeO4) could lead to healthier and more sustainable products, which are increasingly requested by consumers. Lettuce (Lactuca sativa L.) plants were grown in an aquaponics system (fish water) as compared with a control (conventional soilless fertigation), and sprayed with different concentrations of selenium (0, 4, 8, and 16 µmol L−1). The results showed a reduction in the dry weight and N content of lettuce plants irrigated with the fish water mixture treatment. However, the application of Se relieved this stress, increasing the photosynthetic rate and ABTS, and reducing the content of chlorophylls, β-carotene, and several of the measured amino acids. The best results were observed with the highest concentration of Se (16 µmol L−1), as an increase in nitrogen content was observed, as shown by a greater weight of the plant. Furthermore, this treatment produced the greatest increase in ABTS and the least reduction in amino acid content. This novel study highlights the possibility of improving the efficiency of N utilization in lettuce by applying foliar selenium in combination with an aquaponics system.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Peerzada Yasir Yousuf ◽  
Peerzada Arshid Shabir ◽  
Khalid Rehman Hakeem

Nitrogen (N) is one of the indispensable nutrients required by plants for their growth, development, and survival. Being a limited nutrient, it is mostly supplied exogenously to the plants, to maintain quality and productivity. The increased use of N fertilizers is associated with high-cost inputs and negative environmental consequences, which necessitates the development of nitrogen-use-efficient plants for sustainable agriculture. Understanding the regulatory mechanisms underlying N metabolism in plants under low N is one of the prerequisites for the development of nitrogen-use-efficient plants. One of the important and recently discovered groups of regulatory molecules acting at the posttranscriptional and translational levels are microRNAs (miRNAs). miRNAs are known to play critical roles in the regulation of gene expression in plants under different stress conditions including N stress. Several classes of miRNAs associated with N metabolism have been identified so far. These nitrogen-responsive miRNAs may provide a platform for a better understanding of the regulation of N metabolism and pave a way for the development of genotypes for better N utilization. The current review presents a brief outline of miRNAs and their regulatory role in N metabolism.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 287-287
Author(s):  
Cheyanne A Myers ◽  
Mario de Haro Marti ◽  
Mireille Chahine ◽  
Gwinyai E Chibisa

Abstract Clinoptilolite (CLN), could potentially improve nitrogen (N) utilization when fed to beef cattle as it can bind ruminal-ammonia-N (NH3-N), limiting its loss and subsequent detoxification into urea-N, which is released into blood and is excreted in urine. However, the effectiveness of CLN is influenced by physical properties such as particle size. Although decreasing the particle size has been shown to increase the binding of ammonium in-vitro, this remains to be evaluated in vivo. Therefore, the objective of this study was to determine the effects of feeding CLN of two different particle sizes (30 and 400 µm) on ruminal NH3-N and plasma-urea-N (PUN) concentrations, ruminal pH, and nutrient intake and apparent total-tract digestibility. Six ruminally-cannulated beef heifers (mean initial BW± SD, 620.8 ± 30.15) were used in a replicated 3 × 3 Latin square design with 21 d periods (sample collection from d 15 to 21). Dietary treatments were: 1) finishing ration with no supplement (CON), 2) CON +30-µm CLN (CL-30), and 3) CON + 400-µm CLN (CL-400). Clinoptilolite was top-dressed (2.5% of diet DM) during morning feeding. Intake was measured daily. Ruminal fluid was collected on d 19 for NH3-N analysis and blood was collected 3 h post-feeding on d 21 for PUN analysis. Indwelling pH loggers were used to measure ruminal pH (d 15 to 21) and grab fecal samples were collected from d 19 to 21 to determine total-tract nutrient digestibility. Statistical analysis was conducted using PROC MIXED in SAS. There was no treatment effect (P ≥ 0.13) on ruminal NH3-N and PUN concentrations, ruminal pH, and nutrient (DM, OM, NDF, ADF and CP) intake and apparent total tract digestibility. In conclusion, feeding CLN to finishing heifers had no effect on measures of N utilization, ruminal pH and nutrient intake and apparent total-tract digestibility.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 459-460
Author(s):  
Ciana Bowhay ◽  
Tryon Wickersham

Abstract Our objective was to determine the effects of differing levels of supplemental nitrogen offered daily, or every 3 d on nitrogen balance, forage intake, and digestibility in cattle consuming low-quality forage. Five ruminally cannulated Angus × Hereford steers (BW = 350 ± 71 kg) were used in a 5 × 5 Latin square design. Steers consumed low-quality bluestem hay (67.7% NDF, 4.7% CP; DM basis) ad libitum. Treatments were no supplement (CON), or cottonseed meal offered at levels providing 120 mg N/kg BW each day (L/1D) or every 3 d (L/3D), 240 mg N/kg BW every 3 d (M/3D), or 360 mg N/kg BW every 3 d (H/3D). Hay, ort, urine, and fecal samples were collected during the last 6 d of each period and ruminal fluid during the last 3 d. Total digestible OM intake was greater in L/1D (6660 g/d; P < 0.01) compared to CON (4498 g/d) and increased linearly in steers supplemented intermittently (5145, 6170, and 6698 g/d for L/3D, M/3D, and H3/D, respectfully; P < 0.01). Total tract OM digestibility was similar between CON and L/1D, L/3D, and H/3D (58.21, 61.21, 60.82, and 60.91%, respectively; P ≥ 0.10) but was greater in M/3D steers (63.30%; P ≤ 0.02). Reducing frequency of protein supplementation to every 3-d improved forage intake and utilization similar to daily supplementation when provided at medium (240 mg N/kg BW) or high (360 mg N/kg BW) levels. Improved efficiency of nitrogen recycling likely buffered disruptions in protein supply, maintaining intake and digestibility of low-quality forage without daily supplementation. Supplementation of protein every 3 d at 240 g N/kg BW appears to the most biologically effective strategy, increasing intake of LQF and maximizing OM digestibility and N utilization.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3170
Author(s):  
Maqsood Sadiq ◽  
Usama Mazhar ◽  
Ghulam Abbas Shah ◽  
Zeshan Hassan ◽  
Zahid Iqbal ◽  
...  

Currently, the global agriculture productivity is heavily relied on the use of chemical fertilizers. However, the low nutrient utilization efficiency (NUE) is the main obstacle for attaining higher crop productivity and reducing nutrients losses from these fertilizers to the environment. Coating fertilizer with micronutrients and biopolymer can offer an opportunity to overcome these fertilizers associated problems. Here, we coated urea with zinc sulphate (ZnS) and ZnS plus molasses (ZnSM) to control its N release, decrease the ammonia (NH3) volatilization and improve N utilization efficiency by sunflower. Morphological analysis confirmed a uniform coating layer formation of both formulations on urea granules. A slow release of N from ZnS and ZnSM was observed in water. After soil application, ZnSM decreased the NH3 emission by 38% compared to uncoated urea. Most of the soil parameters did not differ between ZnS and uncoated urea treatment. Microbial biomass N and Zn in ZnSM were 125 and 107% higher than uncoated urea, respectively. Soil mineral N in ZnSM was 21% higher than uncoated urea. Such controlled nutrient availability in the soil resulted in higher sunflower grain yield (53%), N (80%) and Zn (126%) uptakes from ZnSM than uncoated fertilizer. Hence, coating biopolymer with Zn on urea did not only increase the sunflower yield and N utilization efficiency but also meet the micronutrient Zn demand of sunflower. Therefore, coating urea with Zn plus biopolymer is recommended to fertilizer production companies for improving NUE, crop yield and reducing urea N losses to the environment in addition to fulfil crop micronutrient demand.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255848
Author(s):  
Long Tan ◽  
Ruifeng Fan ◽  
Huifeng Sun ◽  
Shenglei Guo

Water and nutrient are two critical factors that limit plant growth to spatial-temporal extents. Tree root foraging behavior has not received adequate attention in heterogeneous soil environments in temperate forest under drought pressure. In this study, birch (Betula platyphylla) and larch (Larix olgensis) seedlings were raised in pots in a split-root system with artificially heterogeneous soil environments to study the root foraging response to drought. Potted space was split into two halves where substrates were mixed with fertilizers in 67.5 mg nitrogen (N) plant-1 (N-P2O5-K2O, 14-13-13) to both halves as to create a homogeneous condition. Otherwise, a rate of 135 mg N plant-1 of fertilizers was delivered to a random half to create a heterogeneous condition. Half of seedlings were fully sub-irrigated every three days with the other half received the drought treatment by being watered every six days. Both birch and larch seedlings showed greater net shoot growth and biomass increment in well-watered condition, while root morphology was promoted by drought. Both species placed more fine roots with higher root N concentration in nutrient-enriched patches. In the heterogeneous pattern, birch showed a higher foraging precision assessed by biomass and greater foraging plasticity assessed in morphology and physiology. In contrast, larch seedlings had higher root N concentration in the well-watered condition. Neither species showed a significant response of N utilization to the heterogeneous pattern, but both used more N when water supply was improved. Overall, birch is better at acclimating to heterogeneous soil conditions, but its ability to seize N was lower than larch when drought was alleviated.


2021 ◽  
Author(s):  
Elizabeth J Bailey ◽  
Max E Gottesman ◽  
Ruben L Gonzalez

In bacteria, transcription is coupled to, and can be regulated by, translation. Although recent structural studies suggest that the N-utilization substance G (NusG) transcription factor can serve as a direct, physical link between the transcribing RNA polymerase (RNAP) and the lead ribosome, mechanistic studies investigating the potential role of NusG in mediating transcription-translation coupling are lacking. Here, we report development of a cellular extract- and reporter gene-based, in vitro biochemical system that supports transcription-translation coupling as well as the use of this system to study the role of NusG in coupling. Our findings show that NusG is required for coupling and that the enhanced gene expression that results from coupling is dependent on the ability of NusG to directly interact with the lead ribosome. Moreover, we provide strong evidence that NusG-dependent coupling enhances gene expression through a mechanism in which the lead ribosome that is tethered to the RNAP by NusG suppresses spontaneous backtracking of the RNAP on its DNA template that would otherwise inhibit transcription.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan Tan ◽  
Qiang Chai ◽  
Guang Li ◽  
Cai Zhao ◽  
Aizhong Yu ◽  
...  

AbstractCrop yield is limited by water and nitrogen (N) availability. However, in Hexi Corridor of northwestern China, water scarcity and excessive fertilizer N in wheat (Triticum aestivum L.) production causes serious conflicts between water and N supply and crop demand. A field experiment was conducted from 2016 to 2018 to evaluate whether reducing of irrigation and fertilizer N will reduce grain yield of wheat. There were two irrigation quotas (192 and 240 mm) and three fertilizer N rates (135, 180, and 225 kg N ha−1). The results showed that reducing irrigation to 192 mm and N rate to 180 kg N ha−1 reduced water uptake, water uptake efficiency, and N uptake of spring wheat as compared to local practice (i.e., 240 mm irrigation and 225 kg N ha−1 fertilizer). Whereas, it improved water and N utilization efficiency, and water and N productivity. Consequently, the irrigation and N rate reduced treatment achieved the same quantity of grain yield as local practice. The path analysis showed that interaction effect between irrigation and N fertilization may attributable to the improvement of grain yield with lower irrigation and N rate. The enhanced water and N utilization allows us to conclude that irrigation quota at 192 mm coupled with fertilizer N rate at 180 kg N ha−1 can be used as an efficient practice for wheat production in arid irrigation areas.


Sign in / Sign up

Export Citation Format

Share Document