Estimation of Crop Water Requirement and Irrigation Scheduling of Rice in Southeastern Region of Bangladesh Using FAO-CROPWAT 8.0

2021 ◽  
pp. 431-445
Author(s):  
R. A. Amin ◽  
M. B. Hossain ◽  
A. Yunus
1984 ◽  
Vol 11 (1) ◽  
pp. 4-6 ◽  
Author(s):  
D. K. Pahalwan ◽  
R. S. Tripathi

Abstract Field experiment was conducted during dry season of 1981 and 1982 to determine the optimal irrigation schedule for summer peanuts (Arachis hypogaea L.) in relation to evaporative demand and crop water requirement at different growth stages. It was observed that peanut crop requires a higher irrigation frequency schedule during pegging to pod formation stage followed by pod development to maturity and planting to flowering stages. The higher pod yield and water use efficiency was obtained when irrigations were scheduled at an irrigation water to the cumulative pan evaporation ratio of 0.5 during planting to flowering, 0.9 during pegging to pod formation and 0.7 during pod development to maturity stage. The profile water contribution to total crop water use was higher under less frequent irrigation schedules particularly when the irrigations were scheduled at 0.5 irrigation water to the cumulative pan evaporation ratio up to the pod formation stage.


Author(s):  
Lisma Safitri

The accurate water use information at each stage of plant growth is important to better understand the efficient and precise crop water requirement for optimal plant productivity. Nurseries of palm oil are a phase where young palm oil requires extra maintenance, particularly in meeting the plant water needs. The palm oil in the nursery phase require the regular irrigation schedule due to the vulnerable root systems. The purpose of this study was to calculate the oil palm water requirement with Cropwat 8.0 toward the precise irrigation management and provide a scenario for irrigation scheduling in palm oil nursery. The study was conducted in palm oil main nurseries at KP2 Instiper Yogyakarta with site-specific climate data and soil properties. The method used is analyzing climate data and soil properties and simulating crop water requirements, actual water use and irrigation scheduling with Cropwat 8.0. Based on the results, the average of crop water requirement (ETP) of palm oil in main nursery is 3.4 mm / day. Based on the water deficit scenario from rainfall and crop water requirements, irrigation is scheduling in April for 1.4 mm, May for 18.3 mm, June for  3.5 mm, July for 44.1 mm and August for 42.8 mm. On a daily scale and taking into account the availability of soil moisture and the water retention of plant roots, the net irrigation scheduling is given at an average of 2.2 mm / day and gross irrigation of 6 mm / day which is given daily depending on rainfall and plant age.


2021 ◽  
Vol 23 (4) ◽  
pp. 389-395
Author(s):  
VIKAS SHARMA ◽  
P.K. SINGH ◽  
S.R. BHAKAR ◽  
K.K. YADAV ◽  
S.S. LAKHAWAT ◽  
...  

The results of this study revealed that the pan evaporation and sensor based irrigation scheduling along with fertigation scheduling significantly affected the plant height, fruit weight, fruit length, crop water requirement, crop yield and water use efficiency of okra crop. The pan evaporation and crop evapotranspiration (ETc) values significantly vary over different stages of okra crop. The maximum and minimum average daily pan evaporation was recorded 8.4 mm day-1 and 4.5 mm day-1 at mid stage and late stage of okra crop respectively while, the maximum average daily ETc was recorded 7 mm day-1 at mid stage of okra crop. A approach of irrigation scheduling with 100 per cent field capacity, based on soil moisture sensor under automated drip irrigation system along with 100 per cent RDF through fertigation in equal splits at 4 day intervalor 80 % per cent of volume of crop water requirement based on pan evaporation under automated drip irrigation along with 100 per cent RDF through fertigation in equal splits at 2 day interval, can be used for irrigating okra crop with significant water saving, crop yield and water use efficiency under limited availability of daily weather datain climatic condition of Udaipur district of Rajasthan.


Author(s):  
A. Basit ◽  
R. Z. Khalil ◽  
S. Haque

<p><strong>Abstract.</strong> Assessment and monitoring of crop water requirement (CWR) or crop evapotranspiration (ETc) over a large spatial scale is the critical component for irrigation and drought management. Due to growing competition and increasing shortage of water, careful utilization of water in irrigation is essential. The usage of water for irrigation/agriculture is a top priority for countries like Pakistan, where the GDP mostly based on agriculture, and its scarcity may affect the crop production. Remote sensing techniques can be used to estimate crop water requirement or crop evapotranspiration which can help in efficient irrigation. Simplified-surface energy balance index (SSEBI) model is used to estimate evapotranspiration (ET) of wheat during 2015&amp;ndash;16 growing period in Tando Adam, Sindh. Landsat-8 satellite data for the corresponding years were used. With the help of National Agromet Centre report chart of Crop coefficient (Kc) the CWR, ETc of all phonological stages were estimated. Results indicated that maximum ET and maximum CWR were found in the third leaf to tillering stage with a value of 0.75 and 0.89 respectively. This study will help in managing and monitoring of ET spatial distribution over irrigated crops which results in better irrigation scheduling and water consumption.</p>


Author(s):  
Kasa Mekonen Tiku ◽  
Pratap Singh

Irrigation practice evaluation of center pivot sprinkler irrigation system at Hiwot Agricultural Mechanization farm, North/west Ethiopia was conducted. The aim of the study was evaluating the existing center pivot irrigation practice in terms of irrigation scheduling. Measuring flow rate of center pivot machines for existing irrigation practice and Crop water requirement based scheduling was used to evaluate the system. The highest value of crop water requirement at location m6, m7 and m12 was 5.24 mm/day in September at mid-stage and for location m4 and m8 in October at mid-stage equal to 4.99 mm/day. Whereas, the lowest crop water requirement at location m6, m7 and m12 was 2.52 mm/day in July at the initial stage which was and for location m4 and m8 in august at initial stage equal to 2.08 mm/day. The actual flow rate of center pivot machines varies from 0.7l/s for m7 to a maximum of 1l/s for m4 whereas estimated crop water requirement flow rate varies from 0.6l/s for m6 to a maximum of 0.8l/s for m4. The study also revealed that the actual flow rate of the nozzles was excess. Therefore improvement of center pivot sprinkler irrigation system can be amended by using proper irrigation scheduling and by introducing an automatic control system.


Sign in / Sign up

Export Citation Format

Share Document