Section I: Wide Bandgap (WBG) Semiconductors as Terahertz Radiation Generator

2021 ◽  
pp. 153-172
Author(s):  
Suranjana Banerjee
2013 ◽  
Vol 4 (8) ◽  
pp. 719-728
Author(s):  
T. V. Bondarenko ◽  
A. N. Didenko ◽  
S. M. Polozov

2019 ◽  
Vol 21 (11) ◽  
pp. 113042 ◽  
Author(s):  
X Ropagnol ◽  
Zs Kovács ◽  
B Gilicze ◽  
M Zhuldybina ◽  
F Blanchard ◽  
...  

Author(s):  
F. A. Ponce ◽  
R. L. Thornton ◽  
G. B. Anderson

The InGaAlP quaternary system allows the production of semiconductor lasers emitting light in the visible range of the spectrum. Recent advances in the visible semiconductor diode laser art have established the viability of diode structures with emission wavelengths comparable to the He-Ne gas laser. There has been much interest in the growth of wide bandgap quaternary thin films on GaAs, a substrate most commonly used in optoelectronic applications. There is particular interest in compositions which are lattice matched to GaAs, thus avoiding misfit dislocations which can be detrimental to the lifetime of these materials. As observed in Figure 1, the (AlxGa1-x)0.5In0.5P system has a very close lattice match to GaAs and is favored for these applications.In this work, we have studied the effect of silicon diffusion in GaAs/InGaAlP structures. Silicon diffusion in III-V semiconductor alloys has been found to have an disordering effect which is associated with removal of fine structures introduced during growth. Due to the variety of species available for interdiffusion, the disordering effect of silicon can have severe consequences on the lattice match at GaAs/InGaAlP interfaces.


2020 ◽  
Vol 92 (2) ◽  
pp. 20502
Author(s):  
Behrokh Beiranvand ◽  
Alexander S. Sobolev ◽  
Anton V. Kudryashov

We present a new concept of the thermoelectric structure that generates microwave and terahertz signals when illuminated by femtosecond optical pulses. The structure consists of a series array of capacitively coupled thermocouples. The array acts as a hybrid type microwave transmission line with anomalous dispersion and phase velocity higher than the velocity of light. This allows for adding up the responces from all the thermocouples in phase. The array is easily integrable with microstrip transmission lines. Dispersion curves obtained from both the lumped network scheme and numerical simulations are presented. The connection of the thermocouples is a composite right/left-handed transmission line, which can receive terahertz radiation from the transmission line ports. The radiation of the photon to the surface of the thermocouple structure causes a voltage difference with the bandwidth of terahertz. We examined a lossy composite right/left-handed transmission line to extract the circuit elements. The calculated properties of the design are extracted by employing commercial software package CST STUDIO SUITE.


2018 ◽  
Vol 13 (1) ◽  
pp. 13-24
Author(s):  
A. V. Arzhannikov ◽  
◽  
P. V Kalinin ◽  
E. S. Sandalov ◽  
S. L. Sinitsky ◽  
...  

2019 ◽  
Author(s):  
Ulrich W. Paetzold ◽  
Saba Gharibzadeh ◽  
Marius Jackoby ◽  
Tobias Abzieher ◽  
Somayeh Moghadamzadeh ◽  
...  

2019 ◽  
Author(s):  
Yuliar Firdaus ◽  
Thomas D. Anthopoulos ◽  
Yuanbao Lin ◽  
Ferry Anggoro Ardy Nugroho ◽  
Emre Yengel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document