Electrochemical Synthesis of Titania-Containing Composites with a Metallic Matrix for Photochemical Degradation of Organic Pollutants in Wastewater

2021 ◽  
pp. 303-323
Author(s):  
V. S. Protsenko ◽  
F. I. Danilov
2022 ◽  
Author(s):  
Brian DiMento ◽  
Cristina Tusei ◽  
Christoph Aeppli

Short-chain chlorinated paraffins (SCCPs) are a complex mixture of polychlorinated alkanes (C10-C13, chlorine content 40-70%), and have been categorized as persistent organic pollutants. However, there are knowledge gaps about their environmental degradation, particularly the effectiveness and mechanism of photochemical degradation in surface waters. Photochemically-produced hydrated electrons (e-(aq)) have been shown to degrade highly chlorinated compounds in environmentally-relevant conditions more effectively than hydroxyl radicals (·OH), which can degrade a wide range of organic pollutants. This study aimed to evaluate the potential for e-(aq) and ·OH to degrade SCCPs. To this end, the degradation of SCCP model compounds was investigated under laboratory conditions that photochemically produced e-(aq) or ·OH. Resulting SCCP degradation rate constants for e-(aq) were on the same order of magnitude as well-known chlorinated pesticides. Experiments in the presence of ·OH yielded similar or higher second-order rate constants. Trends in e-(aq) and ·OH SCCP model compounds degradation rate constants of the investigated SCCPs were consistent with that of other chlorinated compounds, with higher chlorine content producing in higher rate constants for e-(aq) and lower for ·OH. Above a chlorine:carbon ratio of approximately 0.6, the e-(aq) second-order rate constants were higher than rate constants for ·OH reactions. Results of this study furthermore suggest that SCCPs are likely susceptible to photochemical degradation in sunlit surface waters, facilitated by dissolved organic matter that can produce e-(aq) and ·OH when irradiated.


Author(s):  
Gaukhar Balbayeva ◽  
Azat Yerkinova ◽  
Vassilis J Inglezakis ◽  
Stavros G Poulopoulos

2019 ◽  
Vol 52 (9) ◽  
pp. 1075-1080
Author(s):  
O. A. Trubetskoi ◽  
S. V. Patsaeva ◽  
O. E. Trubetskaya

2020 ◽  
Author(s):  
Brian DiMento ◽  
Cristina Tusei ◽  
Christoph Aeppli

<p>Short-chain chlorinated paraffins (SCCPs) are a complex mixture of polychlorinated alkanes (C10-C13, chlorine content 40-70%). While these compounds are categorized as persistent organic pollutants, there are knowledge gaps about their environmental degradation, particularly the effectiveness and mechanism of photochemical degradation in surface waters. Photochemically-produced hydrated electrons (e-(aq)) have been shown to degrade highly chlorinated compounds in environmentally-relevant conditions more effectively than hydroxyl radicals (·OH), which can degrade a wide range of organic pollutants. This study aimed to evaluate the potential for e-(aq) to degrade SCCPs, and compare this reaction to ·OH-mediated degradation. To this end, the degradation of SCCP model compounds was investigated under laboratory conditions that photochemically produced e-(aq) or ·OH. Resulting SCCP degradation rate constants for e-(aq) were on the same order of magnitude as well-known chlorinated pesticides. Experiments in the presence of ·OH yielded similar or higher second-order rate constants. By compiling literature data for a wide range of chlorinated compounds, it was found that higher chlorine content results in higher rate constants for e-(aq) and lower for ·OH. Above a composition of approximately 60 % Cl, the e-(aq) second-order rate constants were higher than rate constants for ·OH reactions. The results of this study imply that SCCPs are susceptible to photochemical degradation in the environment, facilitated by dissolved organic matter and other sources of reactive intermediates in sunlit surface waters.<br></p>


2020 ◽  
Author(s):  
Brian DiMento ◽  
Cristina Tusei ◽  
Christoph Aeppli

<p>Short-chain chlorinated paraffins (SCCPs) are a complex mixture of polychlorinated alkanes (C10-C13, chlorine content 40-70%). While these compounds are categorized as persistent organic pollutants, there are knowledge gaps about their environmental degradation, particularly the effectiveness and mechanism of photochemical degradation in surface waters. Photochemically-produced hydrated electrons (e-(aq)) have been shown to degrade highly chlorinated compounds in environmentally-relevant conditions more effectively than hydroxyl radicals (·OH), which can degrade a wide range of organic pollutants. This study aimed to evaluate the potential for e-(aq) to degrade SCCPs, and compare this reaction to ·OH-mediated degradation. To this end, the degradation of SCCP model compounds was investigated under laboratory conditions that photochemically produced e-(aq) or ·OH. Resulting SCCP degradation rate constants for e-(aq) were on the same order of magnitude as well-known chlorinated pesticides. Experiments in the presence of ·OH yielded similar or higher second-order rate constants. By compiling literature data for a wide range of chlorinated compounds, it was found that higher chlorine content results in higher rate constants for e-(aq) and lower for ·OH. Above a composition of approximately 60 % Cl, the e-(aq) second-order rate constants were higher than rate constants for ·OH reactions. The results of this study imply that SCCPs are susceptible to photochemical degradation in the environment, facilitated by dissolved organic matter and other sources of reactive intermediates in sunlit surface waters.<br></p>


2018 ◽  
Vol 2 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Tee L. Guidotti

On 16 October 1996, a malfunction at the Swan Hills Special Waste Treatment Center (SHSWTC) in Alberta, Canada, released an undetermined quantity of persistent organic pollutants (POPs) into the atmosphere, including polychlorinated biphenyls, dioxins, and furans. The circumstances of exposure are detailed in Part 1, Background and Policy Issues. An ecologically based, staged health risk assessment was conducted in two parts with two levels of government as sponsors. The first, called the Swan Hills Study, is described in Part 2. A subsequent evaluation, described here in Part 3, was undertaken by Health Canada and focused exclusively on Aboriginal residents in three communities living near the lake, downwind, and downstream of the SHSWTC of the area. It was designed to isolate effects on members living a more traditional Aboriginal lifestyle. Aboriginal communities place great cultural emphasis on access to traditional lands and derive both cultural and health benefits from “country foods” such as venison (deer meat) and local fish. The suspicion of contamination of traditional lands and the food supply made risk management exceptionally difficult in this situation. The conclusion of both the Swan Hills and Lesser Slave Lake studies was that although POPs had entered the ecosystem, no effect could be demonstrated on human exposure or health outcome attributable to the incident. However, the value of this case study is in the detail of the process, not the ultimate dimensions of risk. The findings of the Lesser Slave Lake Study have not been published previously and are incomplete.


Sign in / Sign up

Export Citation Format

Share Document