chlorinated paraffins
Recently Published Documents


TOTAL DOCUMENTS

458
(FIVE YEARS 194)

H-INDEX

47
(FIVE YEARS 13)

2022 ◽  
Author(s):  
Brian DiMento ◽  
Cristina Tusei ◽  
Christoph Aeppli

Short-chain chlorinated paraffins (SCCPs) are a complex mixture of polychlorinated alkanes (C10-C13, chlorine content 40-70%), and have been categorized as persistent organic pollutants. However, there are knowledge gaps about their environmental degradation, particularly the effectiveness and mechanism of photochemical degradation in surface waters. Photochemically-produced hydrated electrons (e-(aq)) have been shown to degrade highly chlorinated compounds in environmentally-relevant conditions more effectively than hydroxyl radicals (·OH), which can degrade a wide range of organic pollutants. This study aimed to evaluate the potential for e-(aq) and ·OH to degrade SCCPs. To this end, the degradation of SCCP model compounds was investigated under laboratory conditions that photochemically produced e-(aq) or ·OH. Resulting SCCP degradation rate constants for e-(aq) were on the same order of magnitude as well-known chlorinated pesticides. Experiments in the presence of ·OH yielded similar or higher second-order rate constants. Trends in e-(aq) and ·OH SCCP model compounds degradation rate constants of the investigated SCCPs were consistent with that of other chlorinated compounds, with higher chlorine content producing in higher rate constants for e-(aq) and lower for ·OH. Above a chlorine:carbon ratio of approximately 0.6, the e-(aq) second-order rate constants were higher than rate constants for ·OH reactions. Results of this study furthermore suggest that SCCPs are likely susceptible to photochemical degradation in sunlit surface waters, facilitated by dissolved organic matter that can produce e-(aq) and ·OH when irradiated.


Chemosphere ◽  
2022 ◽  
Vol 287 ◽  
pp. 132344
Author(s):  
Yago Guida ◽  
Raquel Capella ◽  
Natsuko Kajiwara ◽  
Joshua Olajiire Babayemi ◽  
João Paulo Machado Torres ◽  
...  

Chemosphere ◽  
2022 ◽  
Vol 287 ◽  
pp. 132032 ◽  
Author(s):  
Walter Vetter ◽  
Jannik Sprengel ◽  
Kerstin Krätschmer

2022 ◽  
Author(s):  
Junichiro Koshiba ◽  
Takaaki Nagano ◽  
Yasuhiro Hirai ◽  
Shinichi Sakai

2021 ◽  
Vol 173 ◽  
pp. 113049
Author(s):  
Hongmei Hu ◽  
Jianli Qu ◽  
Meirong Zhao ◽  
Pengfei Wu ◽  
Wenbin Zhu ◽  
...  

2021 ◽  
pp. 128192
Author(s):  
Yujiao Wang ◽  
Xingyi Wu ◽  
Yaxin Wang ◽  
Su Zhang ◽  
Shujun Dong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document