hawaiian islands
Recently Published Documents


TOTAL DOCUMENTS

1356
(FIVE YEARS 138)

H-INDEX

60
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Vladimir Gnezdilov ◽  
Charles Bartlett

Euroxenus vayssieresi (Bonfils, Attie & Reynaud, 2001) (Issinae, Sarimini) was described (in the genus Borbonissus Bonfils, Attie & Reynaud, 2001) from Réunion Island, in the Indian Ocean and previous to this report has not been recorded elsewhere. Euroxenus vayssieresi is here illustrated and redescribed to improved taxonomic diagnosis. Euroxenus vayssieresi is recorded for the first time from the island of Hawaii in the Hawaiian Archipelago. This is first record of the family Issidae from the Hawaiian Archipelago.


2021 ◽  
pp. 211-226
Author(s):  
Eric A. VanderWerf ◽  
Nicholas P. Kalodimos
Keyword(s):  

Zootaxa ◽  
2021 ◽  
Vol 5085 (1) ◽  
pp. 1-73
Author(s):  
DALE R. CALDER ◽  
ANUSCHKA FAUCCI

Forty-two species of hydroids, excluding stylasterids, are reported in the present collection from the Northwestern Hawaiian Islands. Of these, four are anthoathecates and 38 are leptothecates. Among the latter, Sertularella affinicostata and Monotheca gibbosa are described as new species. The binomen Halopteris longibrachia is proposed as a new replacement name for Plumularia polymorpha var. sibogae Billard, 1913, an invalid junior primary homonym of P. sibogae Billard, 1911. Based largely on evidence from earlier molecular phylogenies, the genus Disertasia Neppi, 1917 is resurrected to accommodate species including Dynamena crisioides Lamouroux, 1824, Sertularia disticha Bosc, 1802, and Sia. moluccana Pictet, 1893. Sertularella robusta Coughtrey, 1876 is an invalid junior primary homonym of Sla. gayi var. robusta Allman, 1874a, and has been replaced here by the binomen Sla. quasiplana Trebilcock, 1928, originally described as Sla. robusta var. quasiplana Trebilcock, 1928. Clytia hummelincki (Leloup, 1935) is referred to the synonymy of its senior subjective synonym, C. brevithecata (Thornely, 1900). Following Reversal of Precedence provisions in the International Code of Zoological Nomenclature to preserve prevailing usage of binomena, the familiar names Sia. disticha Bosc, 1802 (also known as Dynamena disticha) and Lytocarpia phyteuma (Stechow, 1919b) are designated nomena protecta and assigned precedence over their virtually unknown senior synonyms Hydra quinternana Bosc, 1797 and Aglaophenia clavicula Whitelegge, 1899, respectively, names now reduced to the status of nomena oblita. Twenty species are reported for the first time from Hawaii [Eudendrium merulum Watson, 1985, Phialellidae (undetermined), Hebella sp., Hebellopsis scandens (Bale, 1888), H. sibogae Billard, 1942, Clytia brevithecata, C. linearis (Thornely, 1900), C. cf. noliformis (McCrady, 1859), Halecium sp., Sla. affinicostata, Sla. angulosa Bale, 1894, Pasya heterodonta (Jarvis, 1922), Tridentata orthogonalis (Gibbons & Ryland, 1989), Pycnotheca producta (Bale, 1881), Monotheca gibbosa, H. longibrachia, A. postdentata Billard, 1913, A. suensonii Jäderholm, 1896, A. whiteleggei Bale, 1888, and L. flexuosa (Lamouroux, 1816)]. Sertularia orthogonalis, reported for only the third time worldwide, is assigned to the genus Tridentata Stechow, 1920. Hydroids of the NOWRAMP 2002 collection consisted largely of presumptive widespread species, with over 75% of them having been reported elsewhere in the tropical Indo-west Pacific region.  


2021 ◽  
Vol 8 ◽  
Author(s):  
Alexander R. Gaos ◽  
Lauren Kurpita ◽  
Hannah Bernard ◽  
Luke Sundquist ◽  
Cheryl S. King ◽  
...  

Evaluating wildlife population trends is necessary for the development of effective management strategies, which are particularly relevant for highly threatened species. Hawksbill marine turtles (Eretmochelys imbricata) are considered endangered globally and are rare in Hawai‘i. Remnant hawksbill nesting beaches were identified in Hawai‘i in the late 1980s and the primary sites have been monitored since that time. In this study we summarize all available hawksbill nesting activity around the Hawaiian Islands between 1988 and 2018, highlighting relevant demographic and geographic data for the species. Because monitoring effort varied substantially across space and time, we implemented a predictive modeling approach that accounted for varying effort to explore potential trends in annual number of nesting females and nests over time. Field monitoring efforts documented an annual average of 14 ± 4.3 (range: 5–26) nesting females and 48 ± 19.0 (range: 12–93) nests, with a cumulative total of 178 individual nesting females and 1,280 nests recorded across all years. Nesting has been documented on four Hawaiian Islands, with the overwhelming majority of nesting females (78.4%) and nests (86.5%) recorded at four beaches along the southern coast of Hawai‘i Island. Recent monitoring (2018) at a beach on Moloka‘i Island revealed numbers similar to the most important beaches on Hawai‘i Island. Despite difficulty discerning obvious trends when looking solely at the raw tabulated numbers from field monitoring, our analysis suggests both the number of nesting females and nests have been positively trending since 2006, and this is supported by a higher percentage (57.1% of annual cohorts) of neophyte (vs. remigrant) nesters over the second half of the monitoring timeframe. The masking of obvious trends in the tabulated numbers is likely due to decreased overall monitoring effort as a result of reduced funding in recent years, coupled with a shift in focal monitoring effort from the historical primary nesting site of Kamehame, to the more recently established nesting site of Pōhue. Although the positive trend is encouraging, our findings highlight the precarious state of hawksbills in Hawai‘i and the need to enhance monitoring across all sites to support more robust population assessments and management decision making.


Phytotaxa ◽  
2021 ◽  
Vol 524 (1) ◽  
pp. 14-26
Author(s):  
ALISON R. SHERWOOD ◽  
FERESA P. CABRERA ◽  
HEATHER L. SPALDING ◽  
ERIKA A. ALVARADO ◽  
CELIA M. SMITH ◽  
...  

Two new species, one in the genus Incendia, and one in Seiria, are illustrated and described here from mesophotic peyssonnelioid specimens collected in the Hawaiian Islands based on molecular and morphological analyses. Both genera are reported from Hawai‘i for the first time. Incendia lisianskiensis sp. nov. differs from the other nine described members of the genus by its lack of hair cells, by the perithallial filaments arising at a more or less 90º angle from the hypothallus, while Seiria mesophotica sp. nov. is distinguished from the only other described species, S. magnifusa, by its lack of obvious and well-developed perithallial cell fusions. With the description of these two species the total number of recognized Hawaiian members of the Peyssonneliales rises to nine. Previously recorded species included Peyssonnelia conchicola, P. inamoena, P. japonica, P. rubra, Ramicrusta hawaiiensis, R. lehuensis, and Sonderophycus copusii.


2021 ◽  
Author(s):  
Timothy A. Crombie ◽  
Paul Battlay ◽  
Robyn E. Tanny ◽  
Kathryn S. Evans ◽  
Claire M. Buchanan ◽  
...  

AbstractThe nematode Caenorhabditis elegans is among the most widely studied organisms, but relatively little is known about its natural ecology. Wild C. elegans have been isolated from both temperate and tropical climates, where they feed on bacteria associated with decomposing plant material. Genetic diversity is low across much of the globe but high in the Hawaiian Islands and across the Pacific Rim. The high genetic diversity found there suggests that: (1) the origin of the species lies in Hawaii or the surrounding Pacific Rim; and (2) the ancestral niche of the species is likely similar to the Hawaiian niche. A recent study of the Hawaiian niche found that genetically distinct groups appeared to correlate with elevation and temperature, but the study had a limited sample size. To better characterize the niche and genetic diversity of C. elegans on the Hawaiian Islands and to explore how genetic diversity might be influenced by local adaptation, we repeatedly sampled nematodes over a three-year period, measured various environmental parameters at each sampling site, and whole-genome sequenced the C. elegans isolates that we identified. We found that the typical Hawaiian C. elegans niche is moderately moist native forests at high elevations (500 to 1500 meters) where temperatures are cool (15 to 20°C). We measured levels of genetic diversity and differentiation among Hawaiian strains and found evidence of seven genetically distinct groups distributed across the islands. Then, we scanned these genomes for signatures of local adaptation and identified 18 distinct regions that overlap with hyperdivergent regions, which are likely maintained by balancing selection and enriched for genes related to environmental sensing, xenobiotic detoxification, and pathogen resistance. These results provide strong evidence of local adaptation among Hawaiian C. elegans and a possible genetic basis for this adaptation.


2021 ◽  
Vol 118 (42) ◽  
pp. e2024451118 ◽  
Author(s):  
Austin H. Patton ◽  
Luke J. Harmon ◽  
María del Rosario Castañeda ◽  
Hannah K. Frank ◽  
Colin M. Donihue ◽  
...  

Oceanic islands are known as test tubes of evolution. Isolated and colonized by relatively few species, islands are home to many of nature’s most renowned radiations from the finches of the Galápagos to the silverswords of the Hawaiian Islands. Despite the evolutionary exuberance of insular life, island occupation has long been thought to be irreversible. In particular, the presumed much tougher competitive and predatory milieu in continental settings prevents colonization, much less evolutionary diversification, from islands back to mainlands. To test these predictions, we examined the ecological and morphological diversity of neotropical Anolis lizards, which originated in South America, colonized and radiated on various islands in the Caribbean, and then returned and diversified on the mainland. We focus in particular on what happens when mainland and island evolutionary radiations collide. We show that extensive continental radiations can result from island ancestors and that the incumbent and invading mainland clades achieve their ecological and morphological disparity in very different ways. Moreover, we show that when a mainland radiation derived from island ancestors comes into contact with an incumbent mainland radiation the ensuing interactions favor the island-derived clade.


Sign in / Sign up

Export Citation Format

Share Document